



Chuanhui Xie Sleit sui

## **TEST REPORT**

# Engineering Recommendation EN 50549-1:2019 Requirements for the connection of generation equipment in parallel with public distribution networks

Report Reference No. ...... 221202004SHA-001

Tested by (name + signature) .......... Chuanhui Xie

Approved by (name + signature) .....: Sleif Sui

 Date of issue
 2022-12-28

 Contents
 98 pages

Testing Laboratory ...... Intertek Testing Services Shanghai.

Address...... Building No.86, 1198 Qinzhou Road (North), Shanghai 200233,

China.

Testing location / address...... Same as above

Applicant's name ...... V-TAC EUROPE LTD

Address...... Karavelow 9B, bul.L, Plovdiv 4000, Bulgaria

Test specification:

equipment in parallel with public distribution networks.

Test Report Form/blank test report

Master TRF...... 2019-11

This publication may be reproduced in whole or in part for non-commercial purpose as long as Intertek is acknowledged as copyright owner and source of the material. Intertek takes no responsibility and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Page 2 of 98

Report No. 221202004SHA-001

Test item description ...... Hybrid Solar Inverter

Trade Mark .....: V-TAC

Manufacturer ...... Same as applicant

Model/Type reference.....: VT-6607100, VT-6607101, VT-6607102, VT-6607125, VT-6607133-1,

VT-6607136-1.

VT-6607133, VT-6607136, VT-6607104, VT-6607146, VT-6607105,

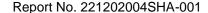
VT-6607155, VT-6607106

Rating..... See below Specifications table

| Input   VI-660/100   VI-660/101   VI-660/102   VI-660/102   VI-660/102   Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Specifications table              |                               |            |                   |            |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------|------------|-------------------|------------|------------------|
| Ppv Max (W)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Model                             | VT-6607100                    | VT-6607101 | VT-6607102        | VT-6607125 | VT-6607133<br>-1 |
| Vmax PV (V)         550         550         550         550         550           Isc PV (absolute Max.) (A)         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26 <td>Input</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Input                             |                               |            |                   |            |                  |
| Isc PV (absolute Max.) (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ppv Max (W)                       | 1500                          | 2300       | 3000              | 3800       | 4500             |
| Number of MPP trackers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Vmax PV (V)                       | 550                           | 550        | 550               | 550        | 550              |
| Number of input strings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Isc PV (absolute Max.) (A)        | 26                            | 26         | 26                | 26         | 26               |
| Max. PV input range (A)         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18.5         18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Number of MPP trackers            | 1                             | 1          | 1                 | 1          | 1                |
| MPPT Voltage Range (V)         80-500         80-500         80-500         80-500         80-500         80-500         80-500         80-500         80-500         80-500         80-500         80-500         80-500         80-500         80-500         80-500         80-500         80-500         80-500         80-500         80-500         80-500         80-500         80-500         80-500         80-500         80-500         170-500           Battery (Input and output)           Battery Nominal Voltage (V)         Li-ion / lead acid etc.           Battery Nominal Voltage (V)         40-60           Max. Charge/Discharge Power (W)         1000         1500         2000         2500         3000           AC Grid (Input and output)           Nominal Voltage (V)         L/N/PE. 230Vac           Nominal Frequency (Hz)         5         7         10         12         14           Current (A)         1000         1500         2000         2500         3000           Max. apparent Power (VA)         1000         1500         2000         2500         3000           Max. continuous Input/output Voltage (V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Number of input strings           | 1                             | 1          | 1                 | 1          | 1                |
| Vdc range @ full power (V)         80-500         90-500         120-500         150-500         170-500           Battery (input and output)         Li-ion / lead acid etc.           Battery Nominal Voltage (V)         40-60           Max. Charge/Discharge Current (A)         25         40         50         63         80           Max. Charge/Discharge Power (W)         1000         1500         2000         2500         3000           AC Grid (input and output)         Nominal Frequency (Hz)         50         3000         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Max. PV input range (A)           | 18.5                          | 18.5       | 18.5              | 18.5       | 18.5             |
| Battery (input and output)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MPPT Voltage Range (V)            | 80-500                        | 80-500     | 80-500            | 80-500     | 80-500           |
| Battery type  Battery Nominal Voltage (V)  Battery Nominal Voltage Range (V)  Max. Charge/Discharge Power (W)  Nominal Voltage (V)  Max. Charge/Discharge Power (W)  Nominal Voltage (V)  Max. Charge/Discharge Power (W)  Nominal Voltage (V)  L/N/PE. 230Vac  Nominal Frequency (Hz)  Max. continuous Input/output  Current (A)  Nominal Power (W)  Nominal Power (W)  Max. Power (W)  Max. Power (W)  Max. apparent Power (VA)  Nominal Output Voltage (V)  L/N/PE. 230Vac  14  L/N/PE. 230Vac  14  L/N/PE. 230Vac  150  Max. 2000  Max. 2500  Max. 3000  Max. 3000  Max. 3000  Max. 4000  Max. 4000 | Vdc range @ full power (V)        | 80-500                        | 90-500     | 120-500           | 150-500    | 170-500          |
| Battery Nominal Voltage (V) Battery Voltage Range (V)  Max. Charge/Discharge Current (A)  Max. Charge/Discharge Power (W)  Nominal Voltage (V)  Max. Charge/Discharge Power (W)  Nominal Voltage (V)  Nominal Frequency (Hz)  Max. continuous Input/output  Current (A)  Nominal Power (W)  Max. Power (W)  Max. Power (W)  Max. Power (VA)  Power Factor  AC Load output  Nominal Output Voltage (V)  L/N/PE. 230Vac  100  1500  100  1500  100  1500  100  1500  100  1500  100  1500  100  1500  100  1500  100  1500  100  1500  100  1500  100  1500  100  1500  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  100  1 | Battery (input and output)        |                               | 1          | 1                 |            |                  |
| Battery Voltage Range (V)  Max. Charge/Discharge Current (A)  Max. Charge/Discharge Power (W)  Max. Charge/Discharge Power (W)  Max. Charge/Discharge Power (W)  Nominal Voltage (V)  Max. Continuous Input/output  Current (A)  Nominal Power (W)  Max. Power (W)  Max. Apparent Power (VA)  Nominal Output Voltage (V)  L/N/PE. 230Vac   10  12  14  14  14  15  7  10  12  14  14  14  15  10  1000  1500  2000  2500  3000  Max. Power (W)  1000  1500  2000  2500  3000  Max. Apparent Power (VA)  1000  1500  2000  2500  3000  Max. apparent Power (VA)  1000  1500  2000  2500  3000  Max. continuous Input/output  Current (A)  Nominal Output Voltage (V)  Nominal Frequency (Hz)  Max. continuous Input/output  Current (A)  Nominal Output Power(W)  1000  1500  2000  2500  3000  Max. Output Power (W)  1000  1500  2000  2500  3000  Max. Output Power (W)  1000  1500  2000  2500  3000  Max. apparent Power (VA)  1000  1500  2000  2500  3000  Max. apparent Power (VA)  1000  1500  2000  2500  3000  Max. apparent Power (VA)  1000  1500  2000  2500  3000  Max. apparent Power (VA)  1000  1500  2000  2500  3000  Max. apparent Power (VA)  1000  1500  2000  2500  3000  Max. apparent Power (VA)  1000  1500  2000  2500  3000  Max. apparent Power (VA)  1000  1500  2000  2500  3000  Max. apparent Power (VA)  1000  1500  2000  2500  3000  Max. apparent Power (VA)  1000  1500  2000  2500  3000  Max. apparent Power (VA)  1000  1500  2000  2500  3000  Max. apparent Power (VA)  1000  1500  2000  2500  3000  Max. apparent Power (VA)  1000  1500  2000  2500  3000  Max. apparent Power (VA)  1000  1500  2000  2500  3000  Max. apparent Power (VA)  1000  1500  2000  2500  3000  Max. apparent Power (VA)  1000  1500  2000  2500  3000  Max. apparent Power (VA)  1000  1500  2000  2500  3000  Max. apparent Power (VA)  1000  1500  2000  2500  3000  Max. apparent Power (VA)  1000  1500  2000  2500  3000  Max. apparent Power (VA)  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1 | Battery type                      |                               | Li-        | ion / lead acid e | etc.       |                  |
| Max. Charge/Discharge Current (A)         25         40         50         63         80           Max. Charge/Discharge Power (W)         1000         1500         2000         2500         3000           AC Grid (input and output)         L/N/PE. 230Vac           Nominal Voltage (V)         L/N/PE. 230Vac           Nominal Frequency (Hz)         50           Max. continuous Input/output Current (A)         5         7         10         12         14           Current (A)         1000         1500         2000         2500         3000           Max. Power (W)         1000         1500         2000         2500         3000           Max. apparent Power (VA)         1000         1500         2000         2500         3000           Max. continuous Input/output Current (A)         L/N/PE. 230Vac           Nominal Output Voltage (V)         L/N/PE. 230Vac           Max. continuous Input/output Current (A)         5         7         10         12         14           Current (A)         10         12         14           Current (A)         10         12         14           Current (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Battery Nominal Voltage (V)       |                               |            | 51.2              |            |                  |
| Max. Charge/Discharge Power (W)         1000         1500         2000         2500         3000           AC Grid (input and output)         L/N/PE. 230Vac           Nominal Voltage (V)         L/N/PE. 230Vac           Nominal Frequency (Hz)         50           Max. continuous Input/output         5         7         10         12         14           Current (A)         1000         1500         2000         2500         3000           Max. Power (W)         1000         1500         2000         2500         3000           Max. apparent Power (VA)         1000         1500         2000         2500         3000           AC Load output           Nominal Output Voltage (V)         L/N/PE. 230Vac           Nominal Frequency (Hz)         50           Max. continuous Input/output         5         7         10         12         14           Current (A)         5         7         10         12         14           Nominal Output Power (W)         1000         1500         2000         2500         3000           Max. Output Power (W)         1000         1500         2000         2500         3000 <t< td=""><td>Battery Voltage Range (V)</td><td></td><td></td><td>40-60</td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Battery Voltage Range (V)         |                               |            | 40-60             |            |                  |
| Nominal Voltage (V)   L/N/PE. 230Vac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Max. Charge/Discharge Current (A) | 25                            | 40         | 50                | 63         | 80               |
| Nominal Voltage (V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Max. Charge/Discharge Power (W)   | 1000                          | 1500       | 2000              | 2500       | 3000             |
| Nominal Frequency (Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AC Grid (input and output)        |                               | T.         | T.                |            |                  |
| Max. continuous Input/output Current (A)         5         7         10         12         14           Nominal Power (W)         1000         1500         2000         2500         3000           Max. Power (W)         1000         1500         2000         2500         3000           Max. apparent Power (VA)         1000         1500         2000         2500         3000           Power Factor         1(-0.8~+0.8 adjustable)           AC Load output           Nominal Output Voltage (V)         L/N/PE. 230Vac           Nominal Frequency (Hz)         50           Max. continuous Input/output Current (A)         5         7         10         12         14           Current (A)         100         12         14           Nominal Output Power(W)         1000         1500         2000         2500         3000           Max. Output Power (W)         1000         1500         2000         2500         3000           Max. apparent Power (VA)         1000         1500         2000         2500         3000           Max. apparent Power (VA)         1000         1500         2000         2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nominal Voltage (V)               |                               |            | L/N/PE. 230Va     | 2          |                  |
| Current (A)         5         7         10         12         14           Nominal Power (W)         1000         1500         2000         2500         3000           Max. Power (W)         1000         1500         2000         2500         3000           Max. apparent Power (VA)         1000         1500         2000         2500         3000           Power Factor         L/N/PE. 230Vac           Nominal Output Voltage (V)         L/N/PE. 230Vac           Nominal Frequency (Hz)         50           Max. continuous Input/output         5         7         10         12         14           Current (A)         10         12         14           Nominal Output Power(W)         1000         1500         2000         2500         3000           Max. Output Power (W)         1000         1500         2000         2500         3000           Max. apparent Power (VA)         1000         1500         2000         2500         3000           Power Factor         1           Others           Ingress protection (IP)         Ingress protec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Nominal Frequency (Hz)            |                               |            | 50                |            |                  |
| Current (A)         Nominal Power (W)         1000         1500         2000         2500         3000           Max. Power (W)         1000         1500         2000         2500         3000           Max. apparent Power (VA)         1000         1500         2000         2500         3000           Power Factor         1(-0.8~+0.8 adjustable)           AC Load output           Nominal Output Voltage (V)         L/N/PE. 230Vac           Nominal Frequency (Hz)         50         50           Max. continuous Input/output Current (A)         5         7         10         12         14           Nominal Output Power(W)         1000         1500         2000         2500         3000           Max. Output Power (W)         1000         1500         2000         2500         3000           Max. apparent Power (VA)         1000         1500         2000         2500         3000           Power Factor         1         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Max. continuous Input/output      | E                             | 7          | 10                | 10         | 1.1              |
| Max. Power (W)         1000         1500         2000         2500         3000           Max. apparent Power (VA)         1000         1500         2000         2500         3000           Power Factor           1(-0.8~+0.8 adjustable)           AC Load output           Nominal Output Voltage (V)           L/N/PE. 230Vac           Nominal Frequency (Hz)           50           Max. continuous Input/output         5         7         10         12         14           Current (A)         1000         1500         2000         2500         3000           Max. Output Power (W)         1000         1500         2000         2500         3000           Max. apparent Power (VA)         1000         1500         2000         2500         3000           Power Factor         1           Others           Ingress protection (IP)         IP65           Temperature (°C)         -25°C to +60°C (Derating45°C)           Inverter Isolation         Non-isolated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Current (A)                       | 3                             | ,          | 10                | 12         | 14               |
| Max. apparent Power (VA)         1000         1500         2000         2500         3000           Power Factor           AC Load output           Nominal Output Voltage (V)           L/N/PE. 230Vac           Nominal Frequency (Hz)           50           Max. continuous Input/output Current (A)         5         7         10         12         14           Nominal Output Power(W)         1000         1500         2000         2500         3000           Max. Output Power (W)         1000         1500         2000         2500         3000           Max. apparent Power (VA)         1000         1500         2000         2500         3000           Power Factor         1         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Nominal Power (W)                 | 1000                          | 1500       | 2000              | 2500       | 3000             |
| Power Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Max. Power (W)                    | 1000                          | 1500       | 2000              | 2500       | 3000             |
| AC Load output           Nominal Output Voltage (V)         L/N/PE. 230Vac           Nominal Frequency (Hz)         50           Max. continuous Input/output Current (A)         5         7         10         12         14           Nominal Output Power(W)         1000         1500         2000         2500         3000           Max. Output Power (W)         1000         1500         2000         2500         3000           Max. apparent Power (VA)         1000         1500         2000         2500         3000           Power Factor         1         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max. apparent Power (VA)          | 1000                          | 1500       | 2000              | 2500       | 3000             |
| Nominal Output Voltage (V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Power Factor                      |                               | 1(-0       | .8~+0.8 adjusta   | able)      |                  |
| Nominal Frequency (Hz)         50           Max. continuous Input/output Current (A)         5         7         10         12         14           Nominal Output Power (W)         1000         1500         2000         2500         3000           Max. Output Power (W)         1000         1500         2000         2500         3000           Max. apparent Power (VA)         1000         1500         2000         2500         3000           Power Factor         1         1         Others         1           Ingress protection (IP)         IP65         1         1           Temperature (°C)         -25°C to +60°C (Derating45°C)         Non-isolated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AC Load output                    |                               |            |                   |            |                  |
| Max. continuous Input/output Current (A)         5         7         10         12         14           Nominal Output Power (W)         1000         1500         2000         2500         3000           Max. Output Power (W)         1000         1500         2000         2500         3000           Max. apparent Power (VA)         1000         1500         2000         2500         3000           Power Factor         1         1         Others         1           Ingress protection (IP)         IP65         1         1           Temperature (°C)         -25°C to +60°C (Derating45°C)         Non-isolated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nominal Output Voltage (V)        |                               |            | L/N/PE. 230Va     | •          |                  |
| Current (A)         5         7         10         12         14           Nominal Output Power (W)         1000         1500         2000         2500         3000           Max. Output Power (W)         1000         1500         2000         2500         3000           Max. apparent Power (VA)         1000         1500         2000         2500         3000           Power Factor         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Nominal Frequency (Hz)            |                               |            | 50                |            |                  |
| Current (A)         Nominal Output Power(W)         1000         1500         2000         2500         3000           Max. Output Power (W)         1000         1500         2000         2500         3000           Max. apparent Power (VA)         1000         1500         2000         2500         3000           Power Factor         1         1         Others         IP65           Ingress protection (IP)         IP65         IP65         IP60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Max. continuous Input/output      | 5                             | 7          | 10                | 12         | 1/1              |
| Max. Output Power (W)         1000         1500         2000         2500         3000           Max. apparent Power (VA)         1000         1500         2000         2500         3000           Power Factor         1           others           Ingress protection (IP)         IP65           Temperature (°C)         -25°C to +60°C (Derating45°C)           Inverter Isolation         Non-isolated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Current (A)                       | 3                             | ,          | 10                | 12         | 14               |
| Max. apparent Power (VA)         1000         1500         2000         2500         3000           Power Factor           Others           Ingress protection (IP)         IP65           Temperature (°C)         -25°C to +60°C (Derating45°C)           Inverter Isolation         Non-isolated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nominal Output Power(W)           |                               |            |                   | 2500       | 3000             |
| Power Factor         1           others         Ingress protection (IP)         IP65           Temperature (°C)         -25°C to +60°C (Derating45°C)           Inverter Isolation         Non-isolated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max. Output Power (W)             | 1000                          | 1500       | 2000              | 2500       | 3000             |
| othersIngress protection (IP)IP65Temperature (°C)-25°C to +60°C (Derating45°C)Inverter IsolationNon-isolated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Max. apparent Power (VA)          | 1000                          | 1500       | 2000              | 2500       | 3000             |
| Ingress protection (IP)  Temperature (°C)  Inverter Isolation  IP65  -25°C to +60°C (Derating45°C)  Non-isolated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Power Factor                      |                               |            | 1                 |            |                  |
| Temperature (°C)  Inverter Isolation  -25°C to +60°C (Derating45°C)  Non-isolated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | others                            |                               |            |                   |            |                  |
| Inverter Isolation Non-isolated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ingress protection (IP)           |                               |            | IP65              |            |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Temperature (°C)                  | -25°C to +60°C (Derating45°C) |            |                   |            |                  |
| Firmware Version V06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Inverter Isolation                | Non-isolated                  |            |                   |            |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Firmware Version                  |                               |            | V06               |            |                  |

Page 3 of 98

|                                   | Specifi          | cations table |                   |            |            |
|-----------------------------------|------------------|---------------|-------------------|------------|------------|
| Model                             | VT-6607136<br>-1 | VT-6607133    | VT-6607136        | VT-6607104 | VT-6607146 |
| Input                             |                  |               |                   |            |            |
| Ppv Max (W)                       | 5400             | 4500          | 5400              | 6000       | 6900       |
| Vmax PV (V)                       | 550              | 550           | 550               | 550        | 550        |
| Isc PV (absolute Max.) (A)        | 26               | 26 x 2        | 26 x 2            | 26 x 2     | 26 x 2     |
| Number of MPP trackers            | 1                | 2             | 2                 | 2          | 2          |
| Number of input strings           | 1                | 1/1           | 1/1               | 1/1        | 1/1        |
| Max. PV input range (A)           | 18.5             | 18.5 x 2      | 18.5 x 2          | 18.5 x 2   | 18.5 x 2   |
| MPPT Voltage Range (V)            | 80-500           | 80-500        | 80-500            | 80-500     | 80-500     |
| Vdc range @ full power (V)        | 210-500          | 90-500        | 110-500           | 120-500    | 130-500    |
| Battery (input and output)        |                  |               |                   |            |            |
| Battery type                      |                  | Li-           | ion / lead acid e | etc.       |            |
| Battery Nominal Voltage (V)       |                  |               | 51.2              |            |            |
| Battery Voltage Range (V)         | 40-60            |               |                   |            |            |
| Max. Charge/Discharge Current (A) | 80               | 80            | 80                | 80         | 80         |
| Max. Charge/Discharge Power (W)   | 3600             | 3000          | 3600              | 4000       | 4600       |
| AC Grid (input and output)        |                  |               |                   |            |            |
| Nominal Voltage (V)               |                  |               | L/N/PE. 230Va     | <br>C      |            |
| Nominal Frequency (Hz)            |                  |               | 50                |            |            |
| Max. continuous Input/output      | 47               | 4.4           | 47                | 40         | 00         |
| Current (A)                       | 17               | 14            | 17                | 19         | 22         |
| Nominal Power (W)                 | 3600             | 3000          | 3600              | 4000       | 4600       |
| Max. Power (W)                    | 3600             | 3000          | 3600              | 4000       | 4600       |
| Max. apparent Power (VA)          | 3600             | 3000          | 3600              | 4000       | 4600       |
| Power Factor                      |                  | 1(-0          | .8~+0.8 adjusta   | able)      |            |
| AC Load output                    |                  |               |                   | ·          |            |
| Nominal Output Voltage (V)        |                  |               | L/N/PE. 230Va     | 0          |            |
| Nominal Frequency (Hz)            |                  |               | 50                |            |            |
| Max. continuous Input/output      | 47               | 4.4           | 47                | 40         | 00         |
| Current (A)                       | 17               | 14            | 17                | 19         | 22         |
| Nominal Output Power(W)           | 3600             | 3000          | 3600              | 4000       | 4600       |
| Max. Output Power (W)             | 3600             | 3000          | 3600              | 4000       | 4600       |
| Max. apparent Power (VA)          | 3600             | 3000          | 3600              | 4000       | 4600       |
| Power Factor                      | 1                |               |                   |            |            |
| others                            |                  |               |                   |            |            |
| Ingress protection (IP)           |                  |               | IP65              |            |            |
| Temperature (°C)                  |                  | -25°C to      | +60°C (Derati     | ng45°C)    |            |
| Inverter Isolation                | Non-isolated     |               |                   |            |            |
| Firmware Version                  |                  |               | V06               |            |            |


Page 4 of 98

|                                   | Specifi                       | cations table |                   |       |
|-----------------------------------|-------------------------------|---------------|-------------------|-------|
| Model                             | VT-6607105                    | VT-6607155    | VT-6607106        |       |
| Input                             |                               |               |                   |       |
| Ppv Max (W)                       | 7500                          | 8300          | 9000              |       |
| Vmax PV (V)                       | 550                           | 550           | 550               |       |
| Isc PV (absolute Max.) (A)        | 26 x 2                        | 26 x 2        | 26 x 2            |       |
| Number of MPP trackers            | 2                             | 2             | 2                 |       |
| Number of input strings           | 1/1                           | 1/1           | 1/1               |       |
| Max. PV input range (A)           | 18.5 x 2                      | 18.5 x 2      | 18.5 x 2          |       |
| MPPT Voltage Range (V)            | 80-500                        | 80-500        | 80-500            |       |
| Vdc range @ full power (V)        | 150-500                       | 160-500       | 170-500           |       |
| Battery (input and output)        |                               |               |                   |       |
| Battery type                      |                               | Li-           | ion / lead acid e | etc.  |
| Battery Nominal Voltage (V)       |                               |               | 51.2              |       |
| Battery Voltage Range (V)         |                               |               | 40-60             |       |
| Max. Charge/Discharge Current (A) | 80                            | 80            | 80                |       |
| Max. Charge/Discharge Power (W)   | 4800                          | 4800          | 4800              |       |
| AC Grid (input and output)        |                               |               |                   |       |
| Nominal Voltage (V)               |                               | ]             | L/N/PE. 230Vac    | ;     |
| Nominal Frequency (Hz)            |                               |               | 50                |       |
| Max. continuous Input/output      | 23                            | 26            | 28                |       |
| Current (A)                       | 23                            | 20            | 20                |       |
| Nominal Power (W)                 | 5000                          | 5500          | 6000              |       |
| Max. Power (W)                    | 5000                          | 5500          | 6000              |       |
| Max. apparent Power (VA)          | 5000                          | 5500          | 6000              |       |
| Power Factor                      |                               | 1(-0          | .8~+0.8 adjusta   | ible) |
| AC Load output                    |                               |               |                   |       |
| Nominal Output Voltage (V)        |                               |               | L/N/PE. 230Vac    | ;     |
| Nominal Frequency (Hz)            |                               |               | 50                |       |
| Max. continuous Input/output      | 23                            | 26            | 28                |       |
| Current (A)                       | 23                            | 20            | 20                |       |
| Nominal Output Power(W)           | 5000                          | 5500          | 6000              |       |
| Max. Output Power (W)             | 5000                          | 5500          | 6000              |       |
| Max. apparent Power (VA)          | 5000                          | 5500          | 6000              |       |
| Power Factor                      |                               |               | 1                 | ,     |
| others                            |                               |               |                   |       |
| Ingress protection (IP)           |                               |               | IP65              |       |
| Temperature (°C)                  | -25°C to +60°C (Derating45°C) |               |                   |       |
| Inverter Isolation                | Non-isolated                  |               |                   |       |
| Firmware Version                  |                               |               | V06               |       |



# Summary of testing:

| EN 50549-1               | Test Description                                                                           | Building No.86, 1198 Qinzho             |
|--------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------|
| 4.4.2<br>4.4.3           | Operating frequency range Minimal requirements for active power delivery at underfrequency | Road (North), Shanghai<br>200233, China |
| 4.4.4                    | Continuous voltage operation range                                                         |                                         |
| 4.5.2                    | Rate of change of frequency (ROCOF)                                                        |                                         |
| 4.5.3                    | UVRT                                                                                       |                                         |
| 4.5.4                    | OVRT                                                                                       |                                         |
| 4.6.1                    | Power response to over frequency                                                           |                                         |
| 4.6.2                    | Power response to underfrequency                                                           |                                         |
| 4.7.2.2                  | Q Capabilites (Power Factor) & Q(U) Capabilities                                           |                                         |
| 4.7.2.3.3                | Q Control. Voltage related control mode                                                    |                                         |
| 4.7.2.3.4                | Q Control Power related control modes                                                      |                                         |
| 4.7.3                    | Voltage control by active power                                                            |                                         |
| 4.7.4                    | Zero current mode                                                                          |                                         |
| 4.9.3                    | Interface protection                                                                       |                                         |
| 4.9.4.                   | Islanding                                                                                  |                                         |
| 4.10.2                   | Reconnection after tripping                                                                |                                         |
| 4.10.3                   | Starting to generate electrical power                                                      |                                         |
| 4.11                     | Active power reduction by setpoint and ceasing active power (Logic interface)              |                                         |
| 4.13                     | Single fault tolerance of interface protection and interface switch                        |                                         |
| Remark:                  |                                                                                            |                                         |
| other than spectrosports | ecial notice, the model VT-6607106 is type tested and validels.                            |                                         |





Test item particulars....: IP protection class ...... IP 65 Possible test case verdicts: - test case does not apply to the test object...... N/A - test object does meet the requirement ...... P(Pass) - test object does not meet the requirement ...... F(Fail) Testing

Date of receipt of test item...... 2022-12-27

Date (s) of performance of tests...... 2022-12-27 to 2022-12-28

#### General remarks:

The test results presented in this report are only to the object (single power inverter unit) tested and base on Low Voltage connected on small power station.

Installer and relevant persons shall comply with EN 50549-1:2019, Local code and Grid Code in EN 50549-1:2019.

This report shall not be reproduced, except in full, without the written approval of the Issuing testing laboratory.

"(see Enclosure #)" refers to additional information appended to the report. "(see appended table)" refers to a table appended to the report.

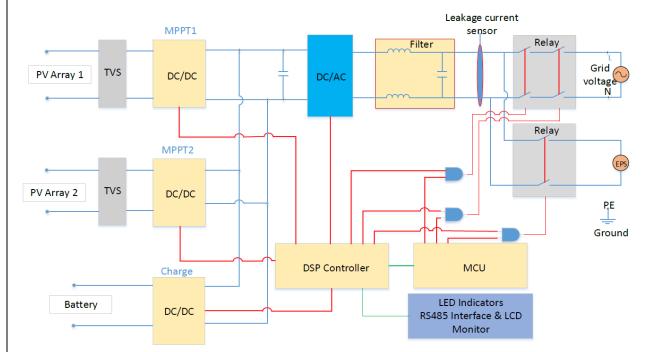
Throughout this report a point is used as the decimal separator.

Determination of the test conclusion is based on IEC Guide 115 in consideration of measurement uncertainty.

Determination of the test result includes consideration of measurement uncertainty from the test equipment and methods.

The test results presented in this report relate only to the item tested. The results indicate that the specimen partially complies with standard" EN 50549-1:2019". See general product information next for details information.




## **General product information:**

The testing item is a single-phase hybrid type inverter for indoor or outdoor installation.

The relays are designed to redundant structure that controlled by separately.

The master controller and slave controller are used together to control relay open or close, if the single fault on one controller, the other controller can be capable to open the relay, so that still providing safety means.

The topology diagram as following:



#### Model differences:

All models are identical with hardware version and software version, the output power is derating by software.

Model VT-6607100, VT-6607101, VT-6607102, VT-6607125, VT-6607133-1, VT-6607136-1.has 1 MPPT tracker with 1 input string, and model VT-6607133, VT-6607136, VT-6607104, VT-6607146, VT-6607105, VT-6607155, VT-6607106 has 2 MPPT trackers and every MPPT tracker has 1 input string.

### **Factory information:**

Afore New Energy Technology (Shanghai) Co., Ltd.

Build No.7, 333 Wanfang Road, Minhang District, Shanghai. China. 201112



## Copy of marking plate



 Isc PV:
 26x2A

 MPPT voltage range:
 80-550V

 Max. Input Current:
 18.5x2A

 Ppv Max:
 9kW

#### Battery (Charge/Discharge)

Battery type: Li-ion / Lead-acid etc.
Battery Normal Voltage (Range): 51.2V (40-60V)
Max. cont. charge/discharge Current: 80A
Max. cont. charge/discharge Power: 4.8kW

#### AC Grid port input and output

Rated Voltage: 2-0/230Vac
Rated Frequency: 50Hz/ 2
Max. cont. Current: 28A
Max. cont. Power: 6kW
Max. cont. apparent Power: 6kVA
Power Factor: 1.0 (-0.8~+0.8 adjustable)

# AC load Output (Stand alone)

Rated Voltage: 50Hz/C230Vac
Rated Frequency: 50Hz/C2
Max. cont. current 28A
Max. cont. Power 6kW
Max. cont. apparent Power
Power Factor: 1.0

#### System

Protective Class:

Type of Isolation:
Ingress Protection:
Temperature:

Over Voltage Category:
Max.Efficiency:

Class I
Transformerless
IP65

-20°C to +60°C (Derating 45°C)
OVC II(PV), OVC III(AC)
97.6%





5 YEARS\*WARRANTY
V-TAC EUROPE LTD

Karavelow 9B, bul.L, Plovdiv 4000, Bulgaria

#### Note:

- The above markings are the minimum requirements required by the safety standard. For the final
  production samples, the additional markings which do not give rise to misunderstanding may be added.
- 2. Label is attached on the side surface of enclosure and visible after installation
- 3. Other marking plate are identical to above, except the model's name and ratings
- 4. The information covered by on marking plate was irrelevant to this report.

Page 9 of 98

|        | EN 50549-1:2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                           |         |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Clause | Requirement - Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Result - Remark                                                                                                                                                                                                                           | Verdict |
| 4      | Requirements on generating plants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                           | Р       |
| 4.1    | General                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | This report is only evaluated and tested for generating unit; The generating plant incorporated with the generating unit shall further consider this clause and sub-clause.                                                               | N/A     |
| 4.2    | Connection scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Shall consider in final PGS                                                                                                                                                                                                               | N/A     |
| 4.3    | Choice of switchgear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                           | Р       |
| 4.3.1  | General Switches shall be chosen based on the characteristics of the power system in which they are intended to be installed. For this purpose, the short circuit current at the installation point shall be assessed, taking into account, inter alia, the short circuit current contribution of the generating plant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                           | P       |
| 4.3.2  | Interface switch Switches shall be power relays, contactors or mechanical circuit breakers each having a breaking and making capacity corresponding to the rated current of the generating plant and corresponding to the short circuit contribution of the generating plant. The short- time withstand current of the switching devices shall be coordinated with rated short circuit power at the point of connection. In case of loss of auxiliary supply power to the switchgear, a secure disconnection of the switch is required immediately.  Where means of isolation (according to HD 60364-5-551) is not required to be accessible to the DSO at all times, automatic disconnection with single fault tolerance according to 4.13 shall be provided. The function of the interface switch might be combined with either the main switch or the generating unit switch in a single switching device. In case of a combination, the single switching device shall be compliant to the requirements of both, the interface switch and the combined main switch or generating unit switch. As a consequence, at least two switches in series shall be present between any generating unit and the POC. | The interface switch is constructed of redundancy, made up of two series relays and power and control separately.  The EUT is a PV inverter, further evaluation refers to EN 62109–1 and EN 62109–2 with respect to the interface switch. | P       |
| 4.4    | Normal operating range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                           | Р       |
| 4.4.1  | General Generating plants when generating power shall have the capability to operate in the operating ranges specified below regardless of the topology and the settings of the interface protection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           | Р       |

Page 10 of 98

|        | EN 50549-1:2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |         |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------|
| Clause | Requirement - Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Result - Remark          | Verdict |
| 4.4.2  | Operating frequency range The generating plant shall be capable of operating continuously when the frequency at the point of connection stays within the range of 49 Hz to 51 Hz. In the frequency range from 47 Hz to 52 Hz the generating plant should be capable of operating until the interface protection trips. Therefore, the generating plant shall at least be capable of operating in the frequency ranges, for the duration and for the minimum requirement as indicated in Table 1.  Respecting the legal framework, it is possible that for some synchronous areas more stringent time periods and/or frequency ranges will be required by the DSO and the responsible party. Nevertheless, they are expected to be within the boundaries of the stringent requirement as indicated in Table 1 unless producer, DSO, TSO and responsible party agree on wider frequency ranges and longer durations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | See appended table 4.4.2 | Р       |
| 4.4.3  | Minimal requirement for active power delivery at underfrequency  A generating plant shall be resilient to the reduction of frequency at the point of connection while reducing the maximum active power as little as possible.  The admissible active power reduction due to underfrequency is limited by the full line in Figure 5 and is characterized by a maximum allowed reduction rate of 10 % of Pmax per 1 Hz for frequencies below 49,5 Hz. It is possible that a more stringent power reduction characteristic is required by the responsible party.  Nevertheless this requirement is expected to be limited to an admissible active power reduction represented by the dotted line in Figure 5 which is characterised by a reduction rate of 2 % of the maximum power Pmax per 1 Hz for frequencies below 49 Hz.  If any technologies intrinsic design or ambient conditions have influence on the power reduction behaviour of the system, the manufacturer shall specify at which ambient conditions the requirements can be fulfilled and eventual limitations. The information can be provided in the format of a graph showing the intrinsic behaviour of the generating unit for example at different ambient conditions. The power reduction and the ambient conditions shall comply with the specification given by the responsible party. If the generating unit does not meet the power reduction at the specified ambient conditions, the producer and the responsible party shall agree on acceptable ambient conditions. | See appended table 4.4.3 | P       |

Page 11 of 98

|         | EN 50549-1:2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |         |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------|
| Clause  | Requirement - Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Result - Remark          | Verdict |
| 4.4.4   | Continuous operating voltage range When generating power, the generating plant shall be capable of operating continuously when the voltage at the point of connection stays within the range of 85 % Un to 110 % Un. Beyond these values the under and over voltage ride through immunity limits as specified in clause 4.5.3 and 4.5.4 shall apply. In case of voltages below Un, it is allowed to reduce the apparent power to maintain the current limits of the generating plant. The reduction shall be as small as technically feasible. For this requirement all phase to phase voltages and in case a neutral is connected, additionally all phase to neutral voltages shall be evaluated.                                                                                                                                                                      | See appended table 4.4.4 | Р       |
| 4.5     | Immunity to disturbances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | Р       |
| 4.5.1   | General In general, generating plants should contribute to overall power system stability by providing immunity towards dynamic voltage changes unless safety standards require a disconnection. The following clauses describe the required immunity for generating plants taking into account the connection technology of the generating modules. The following withstand capabilities shall be provided regardless of the settings of the interface protection.                                                                                                                                                                                                                                                                                                                                                                                                     |                          | Р       |
| 4.5.2   | Rate of change of frequency (ROCOF) immunity ROCOF immunity of a power generating plant means that the generating modules in this plant stay connected with the distribution network and are able to operate when the frequency on the distribution network changes with a specified ROCOF. The generating units and all elements in the generating plant that might cause their disconnection or impact their behaviour shall have this same level of immunity.  The generating modules in a generating plant shall have ROCOF immunity for a ROCOF equal or exceeding the value specified by the responsible party. If no ROCOF immunity value is specified, the following ROCOF immunity shall apply, making distinction between generating technologies:  Non-synchronous generating technology: at least 2 Hz/s Synchronous generating technology: at least 1 Hz/s | See appended table 4.5.2 | Р       |
| 4.5.3   | Under-voltage ride through (UVRT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | Р       |
| 4.5.3.1 | General Generating modules classified as type B modules according to COMMISSION REGULATION 2016/631 shall comply with the requirements of 4.5.3.2 and 4.5.3.3. Generating modules classified as type A and smaller according to COMMISSION REGULATION 2016/631 should comply with these requirements. The actual behaviour of type A modules and smaller shall be specified in the connection agreement.  The requirements apply to all kinds of faults (1ph, 2ph and 3ph).                                                                                                                                                                                                                                                                                                                                                                                             |                          | Р       |

Page 12 of 98

|         | EN 50549-1:2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |         |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------|
| Clause  | Requirement - Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Result - Remark          | Verdict |
| 4.5.3.2 | Generating plant with non-synchronous generating technology  Generating modules shall be capable of remaining connected to the distribution network as long as the voltage at the point of connection remains above the voltage-time curve of Figure 6. The voltage is relative to Un. The smallest phase to neutral voltage, or if no neutral is present, the smallest phase to phase voltage shall be evaluated. The responsible party may define a different UVRT characteristic. Nevertheless, this requirement is expected to be limited to the most stringent curve as indicated in Figure 6. This means that the whole generating module has to comply with the UVRT requirement. This includes all elements in a generating plant: the generating units and all elements that might cause their disconnection.  For the generating unit, this requirement is considered to be fulfilled if it stays connected to the distribution grid as long as the voltage at its terminals remains above the defined voltage-time diagram.  After the voltage returns to continuous operating voltage range, 90 % of pre-fault power or available power whichever is the smallest shall be resumed as fast as possible, but at the latest within 1 s unless the DSO and the responsible party requires another value. | See appended table 4.5.3 | Р       |
| 4.5.3.3 | Generating plant with synchronous generating technology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          | N/A     |
| 4.5.4   | Over-voltage ride through (OVRT) Generating modules, except for micro-generating plants, shall be capable of staying connected to the distribution network as long as the voltage at the point of connection remains below the voltage-time curve of Figure 8.  The highest phase to neutral voltage or if no neutral is present the highest phase to phase voltage shall be evaluated.  This means that not only the generating units shall comply with this OVRT requirement but also all elements in a generating plant that might cause its disconnection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | See appended table 4.5.4 | Р       |
| 4.6     | Active response to frequency deviation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                        | Р       |



|        | EN 50549-1:2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |         |  |  |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------|--|--|
| Clause | Requirement - Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Result - Remark          | Verdict |  |  |
| 4.6.1  | Power response to overfrequency Generating plants shall be capable of activating active power response to overfrequency at a programmable frequency threshold f1 at least between and including 50,2 Hz and 52 Hz with a programmable droop in a range of at least s=2 % to s=12 %. The droop reference is Pref. Unless defined differently by the responsible party: • Pref=Pmax, in the case of synchronous generating technology and electrical energy storage systems. • Pref=PM, the actual AC output power at the instant when the frequency reaches the threshold f1, in the case of all other non-synchronous generating technology The power value calculated according to the droop is a maximum power limit. If e.g. the available primary power decreases during a high frequency period below the power defined by the droop function, lower power values are permitted.  The generating plant shall be capable of activating active power response to overfrequency as fast as technically feasible with an intrinsic dead time that shall be as short as possible with a maximum of 2 s and with a step response time of maximum 30 s, unless another value is defined by the relevant party.  An intentional delay shall be programmable to adjust the dead time to a value between the intrinsic dead time and 2 s. After activation, the active power frequency response shall use the actual frequency at any time, reacting to any frequency increase or decrease according to the programmed droop with an accuracy of ± 10 % of the nominal power (see Figure 9). The resolution of the frequency measurement shall be ± 10 mHz or less. The accuracy is evaluated with a 1 min average value. At POC, loads if present in the producer's network might interfere with the response of the generating plant. The effect of loads is not considered for the evaluation of the accuracy, only the behaviour of the generating plant is relevant. | See appended table 4.6.1 | Р       |  |  |
|        | Generating plants reaching their minimum regulating level shall, in the event of further frequency increase, maintain this power level constant unless the DSO and the responsible party requires to disconnect the complete plant or if the plant consists of multiple units by disconnecting individual units. The active power frequency response is only deactivated if the frequency falls below the frequency threshold f1. If required by the DSO and the responsible party an additional deactivation threshold frequency fstop shall be programmable in the range of at least 50 Hz to f1. If fstop is configured to a frequency below f1 there shall be no response according to the droop in case of a frequency decrease (see Figure 10).  The output power is kept constant until the frequency falls below fstop for a configurable time tstop.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | Р       |  |  |



|        | EN 50549-1:2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T                        | Т       |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------|
| Clause | Requirement - Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Result - Remark          | Verdict |
|        | If at the time of deactivation of the active power frequency response the momentary active power PM is below the available active power PA, the active power increase of the generating plant shall not exceed the gradient defined in 4.10.2.  Settings for the threshold frequency f <sub>1</sub> , the droop and the intentional delay are provided by the DSO and the responsible party. If no settings are provided, the default settings in Table 2 should be applied.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          | Р       |
|        | The enabling and disabling of the function and its settings shall be field adjustable and means shall be provided to protect these from unpermitted interference (e.g. password or seal) if required by the DSO and the responsible party.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          | Р       |
|        | Alternatively for the droop function described above, the following procedure is allowed for generating modules if permitted by the DSO and the responsible party:  • the generating units shall disconnect at randomized frequencies, ideally uniformly distributed between the frequency threshold f1 and 52 Hz;  • in case the frequency decreases again, the generating unit shall start its reconnection procedure once the frequency falls below the specific frequency that initiated the disconnection; for this procedure, the connection conditions described in 4.10 do not apply;  • the randomization shall either be at unit level by changing the threshold over time, or on plant level by choosing different values for each unit within a plant, or on distribution system level if the DSO specifies a specific threshold for each plant or unit connected to its distribution system.  EES units that are in charging mode at the time the frequency passes the threshold f1 shall not reduce the                          |                          | Р       |
|        | frequency passes the threshold f <sub>1</sub> shall not reduce the charging power below P <sub>M</sub> until frequency returns below f <sub>1</sub> . Storage units should increase the charging power according to the configured droop. In case the maximum charging capacity is reached or to prevent any other risk of injury or damage of equipment, a reduction of charging power is permitted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          | Pass    |
| 4.6.2  | Power response to underfrequency EES units shall be capable of activating active power response to underfrequency. Other generating units/plants should be capable of activating active power response to underfrequency. If active power to underfrequency is provided by a generating plant/unit, the function shall comply with the requirements below.  Active power response to underfrequency shall be provided when all of the following conditions are met:  • when generating, the generating unit is operating at active power below its maximum active power Pmax;  • when generating, the generating unit is operating at active power below the available active power PA;  • the voltages at the point of connection of the generating plant are within the continuous operating voltage range;  • when generating, the generating unit is operating with currents lower than its current limit.  In the case of EES units, active power frequency response to underfrequency shall be provided in charging and generating mode. | See appended table 4.6.2 | Р       |



|        | EN 50549-1:2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |         |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|
| Clause | Requirement - Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Result - Remark | Verdict |
|        | The active power response to underfrequency shall be delivered at a programmable frequency threshold f <sub>1</sub> at least between and including 49,8 Hz and 46,0 Hz with a programmable droop in a range of at least 2 % to 12 %. The droop reference P <sub>ref</sub> is P <sub>max</sub> . If the available primary power or a local set value increases during an underfrequency period above the power defined by the droop function, higher power values are permitted. The power value calculated according to the droop is therefore a minimum limit. The generating unit shall be capable of activating active power response to underfrequency as fast as technically feasible with an intrinsic dead time that shall be as short as possible with a maximum of 2 s and with a step response time of maximum 30 s unless another value is defined by the relevant party.  An intentional initial delay shall be programmable to adjust the dead time to a value between the intrinsic dead time and 2 s. |                 | Р       |
|        | After activation, the active power frequency response shall use the actual frequency at any time, reacting to any frequency increase or decrease according to the programmed droop with an accuracy of ± 10 % of the nominal power. The accuracy is evaluated with a 1 min average value. The resolution of the frequency measurement shall be ± 10 mHz or less. At POC loads, if present in the producer's network, might interfere with the response of the generating plant. The effect of loads is not considered for the evaluation of the accuracy, only the behaviour of the generating plant is relevant.                                                                                                                                                                                                                                                                                                                                                                                                    |                 | Р       |
|        | Generating modules reaching any of the conditions above during the provision of active power frequency response shall, in the event of further frequency decrease, maintain this power level constant.  The active power frequency response is only deactivated if the frequency increases above the frequency threshold f1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 | Р       |
|        | Settings for the threshold frequency f <sub>1</sub> , the droop and the intentional delay are defined by the DSO and the responsible party, if no settings are provided, the function shall be disabled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 | Р       |
|        | The activation and deactivation of the function and its settings shall be field adjustable and means shall be provided to protect these from unpermitted interference (e.g. password or seal) if required by the DSO and the responsible party.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | Р       |
| 4.7    | Power response to voltage changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | Р       |
| 4.7.1  | General When the contribution to voltage support is required by the DSO and the responsible party, the generating plant shall be designed to have the capability of managing reactive and/or active power generation according to the requirements of this clause.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 | Р       |
| 4.7.2  | Voltage support by reactive power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | Р       |



|         | EN 50549-1:2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |         |  |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|--|--|
| Clause  | Requirement - Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Result - Remark | Verdict |  |  |
| 4.7.2.1 | General Generating plants shall not lead to voltage changes out of acceptable limits. These limits should be defined by national regulation. Generating units and plants shall be able to contribute to meet this requirement during normal network operation. Throughout the continuous operating frequency (see 4.4.2) and voltage (see 4.4.4) range, the generating plant shall be capable to deliver the requirements stipulated below. Outside these ranges, the generating plant shall follow the requirements as good as technically feasible although there is no specified accuracy required.                                                                                                 |                 | Р       |  |  |
| 4.7.2.2 | Capabilities Unless specified differently below, for specific generating technologies, generating plants shall be able to operate with active factors as defined by the DSO and the responsible party from active factor = 0,90underexcited to active factor=0,90overexcited The reactive power capability shall be evaluated at the terminals of the/each generating unit                                                                                                                                                                                                                                                                                                                             |                 | Р       |  |  |
|         | CHP generating units with a capacity $\leq$ 150 kVA shall be able to operate with active factors as defined by the DSO from cos $\phi = 0.95$ <sub>underexcited</sub> to $\cos \phi = 0.95$ <sub>overexcited</sub> Generating units with an induction generator coupled directly to the grid and used in generating plants above micro generating level, shall be able to operate with active factors as defined by the DSO from $\cos \phi = 0.95$ <sub>underexcited</sub> to $\cos \phi = 1$ at the terminals of the unit. Deviating from 4.7.2.3 only the $\cos \phi$ set point mode is required. Deviating from the accuracy requirements below, the accuracy is only required at active power PD. |                 | N/A     |  |  |
|         | Generating units with an induction generator coupled directly to the grid and used in micro generating plants shall operate with an active factor above 0,95 at the terminals of the generating unit. A controlled voltage support by reactive power is not required from this technology.                                                                                                                                                                                                                                                                                                                                                                                                             |                 | N/A     |  |  |
|         | Generating units with linear generators, coupled directly and synchronously to the grid shall operate with an active factor above 0,95 at the terminals of the generating unit, and therefore a controlled voltage support by reactive power is not required from this technology.                                                                                                                                                                                                                                                                                                                                                                                                                     |                 | N/A     |  |  |
|         | In case of different generating technologies with different requirements in one generating plant, each unit shall provide voltage support by reactive power as required for its specific technology. A compensation of one technology to reach the general plant requirement is not expected.  The DSO and the responsible party may relax the above requirements. This relaxation might be general or specific for a certain generating plant or generating technology.                                                                                                                                                                                                                               |                 | N/A     |  |  |



|           | EN 50549-1:2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T                        |         |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------|
| Clause    | Requirement - Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Result - Remark          | Verdict |
|           | All involved parties can expect to have access to information documenting the actual choices regarding active power capabilities relative to reactive power requirements and related to the power rating in the operating voltage range (see further in this clause). A P-Q Diagram shall be included in the product documentation of a generating unit. When operating above the apparent power threshold Smin equal to 10 % of the maximum apparent power Smax or the minimum regulating level of the generating plant, whichever is the higher value, the reactive power capability shall be provided with an accuracy of ± 2 % Smax. Up to this apparent power threshold Smin, deviations above 2 % are permissible; nevertheless the accuracy shall always be as good as technically feasible and the exchange of uncontrolled reactive power in this low-power operation mode shall not exceed 10 % of the maximum apparent power Smax. At POC loads, if present in the producer's network might interfere with the response of the generating plant. The effect of loads is not considered for the evaluation of the accuracy, only the behaviour of the generating plant is relevant. For generating units with a reactive power capability according Figure 12 the reactive power capability at active power Pp shall be at least according Figure 13. For generating units with a reduced reactive power capability |                          | P       |
| 4.7.2.3   | power capability.  Control modes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | P       |
| 4.7.2.3.1 | <ul> <li>General</li> <li>Where required, the form of the contribution to voltage control shall be specified by the DSO.</li> <li>The control shall refer to the terminals of the generating units The generating plant/unit shall be capable of operating in the control modes specified below within the limits specified in 4.7.2.2. The control modes are exclusive; only one mode may be active at a time.</li> <li>• Q setpoint mode</li> <li>• Q (U)</li> <li>• Cos φ setpoint mode</li> <li>• Cos φ (P)</li> <li>For mass market products, it is recommended to implement all control modes. In case of site specific generating plant design, only the control modes required by the DSO need to be implemented.</li> <li>The configuration, activation and deactivation of the control modes shall be field adjustable. For field adjustable configurations and activation of the active control mode, means shall be provided to protect the settings from unpermitted interference (e.g. password or seal) if required by the DSO. Which control modes are available in a product and how they are configured shall be stated in the product documentation.</li> </ul>                                                                                                                                                                                                                                            |                          | Р       |
| 4.7.2.3.2 | Setpoint control modes  Q setpoint mode and cos φ setpoint mode control the reactive power output and the cos φ of the output respectively, according to a set point set in the control of the generating plant/unit.  In the case of change of the set point local or by remote control the settling time for the new set point shall be less than one minute.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | See appended table 4.7.2 | Р       |

Page 18 of 98

|           | EN 50549-1:2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |         |  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------|--|
| Clause    | Requirement - Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Result - Remark          | Verdict |  |
| 4.7.2.3.3 | Voltage related control mode The voltage related control mode Q (U) controls the reactive power output as a function of the voltage. There is no preferred state of the art for evaluating the voltage. Therefore it is the responsibility of the generating plant designer to choose a method. One of the following methods should be used: • the positive sequence component of the fundamental. • the average of the voltages measured independently for each phase to neutral or phase to phase. • phase independently the voltage of every phase to determine the reactive power for every phase.                                                                                                                                                                                                                                                           | Method 2 used            | р       |  |
|           | For voltage related control modes, a characteristic with a minimum and maximum value and three connected lines according to Figure 16 shall be configurable.  In addition to the characteristic, further parameters shall be configurable:  • The dynamics of the control shall correspond with a first order filter having a time constant that is configurable in the range of 3 s to 60 s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | See appended table 4.7.2 | Р       |  |
|           | To limit the reactive power at low active power two methods shall be configurable:  • a minimal cos φ shall be configurable in the range of 0-0,95;  • two active power levels shall be configurable both at least in the range of 0 % to 100 % of P <sub>D</sub> . The lock-in value turns the Q(U) mode on, the lock-out value turns Q(U) off. If lock-in is larger than lock-out a hysteresis is given. See also Figure 14. The static accuracy shall be in accordance with 4.7.2.2. The dynamic accuracy shall be in accordance with Figure 15 with a maximum tolerance of +/- 5% of P <sub>D</sub> plus a time delay of up to 3 seconds deviating from an ideal first order filter response.                                                                                                                                                                |                          | Р       |  |
| 4.7.2.3.4 | Power related control mode The power related control mode cos $\varphi$ (P) controls the cos $\varphi$ of the output as a function of the active power output. For power related control modes, a characteristic with a minimum and maximum value and three connected lines shall be configurable in accordance with Figure 16. Resulting from a change in active power output a new cos $\varphi$ set point is defined according to the set characteristic. The response to a new cos $\varphi$ set value shall be as fast as technically feasible to allow the change in reactive power to be in synchrony with the change in active power. The new reactive power set value shall be reached at the latest within 10 s after the end value of the active power is reached. The static accuracy of each cos $\varphi$ set point shall be according to 4.7.2.2. | See appended table 4.7.2 | Р       |  |

# Page 19 of 98

| EN 50549-1:2019 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |         |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------|
| Clause          | Requirement - Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Result - Remark          | Verdict |
| 4.7.3           | Voltage related active power reduction In order to avoid disconnection due to overvoltage protection (see 4.9.2.3 and 4.9.2.4), generating plants/units are allowed to reduce active power output as a function of this rising voltage. The final implemented logic can be chosen by the manufacturer. Nevertheless, this logic shall not cause steps or oscillations in the output power. The power reduction caused by such a function may not be faster than an equivalent of a time constant tau = 3 s (= 33%/s at a 100% change). The enabling and disabling of the function shall be field adjustable and means have to be provided to protect the setting from unpermitted interference (e.g. password or seal) if required by the DSO. | See appended table 4.7.3 | Р       |
| 4.7.4           | Short circuit current requirements on generating plants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | Р       |
| 4.7.4.1         | General The following clauses describe the required short circuit current contribution for generating plants taking into account the connection technology of the generating modules. Generating modules classified as type B modules according to COMMISSION REGULATION 2016/631 shall comply with the requirements of 4.7.4.2 and 4.7.4.3. Generating modules classified as type A according to COMMISSION REGULATION 2016/631 should comply with these requirements. The actual behaviour of type A modules shall be specified in the connection agreement.                                                                                                                                                                                 |                          | Р       |



| EN 50549-1:2019 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                  |         |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Clause          | Requirement - Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Result - Remark                                                                                                                                  | Verdict |
| 4.7.4.2         | Generating plant with non-synchronous generating techn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ology                                                                                                                                            | Р       |
| 4.7.4.2.1       | Voltage support during faults and voltage steps In general no voltage support during faults and voltage steps is required from generating plants connected in LV distribution networks as the additional reactive current is expected to interfere with grid protection equipment. If the responsible party requires voltage support during faults and voltage steps for generating plants of type B connected to LV distribution grids, the clause 4.7.4 of EN 50549-2 applies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Only EN 50549-1<br>applies, if required<br>by the responsible<br>party for additional<br>reactive current, the<br>EN 50549-2 shall be<br>applied | Р       |
| 4.7.4.2.2       | Zero current mode for converter connected generating technology  If UVRT capability (see 4.5.3) is provided additional to the requirements of 4.5, generating units connected to the grid by a converter shall have the capability to reduce their current as fast as technically feasible down to or below 10 % of the rated current when the voltage is outside of a static voltage range. Generating units based on a doubly fed induction machine can only reduce the positive sequence current below 10 % of the rated current. Negative sequence current shall be tolerated during unbalanced faults. In case this current reduction is not sufficient, the DSO should choose suitable interface protection settings.  The static voltage range shall be adjustable from 20 % to 100 % of Un for the undervoltage boundary and from 100 % to 130 % of Un for the overvoltage boundary. The default setting shall be 50% of Un for the undervoltage boundary and 120% of Un for the overvoltage boundary. Each phase to neutral voltage or if no neutral is present each phase to phase voltage shall be evaluated. At voltage re-entry into the voltage range, 90% of pre-fault power or available power, whichever is the smallest, shall be resumed as fast as possible, but at the latest according to 4.5.3 and 4.5.4. All described settings are defined by the DSO and the responsible party. If no settings are provided, the function shall be disabled.  The enabling and disabling and the settings shall be field adjustable and means have to be provided to protect these from unpermitted interference (e.g. password or seal) if required by the DSO. | Test with 4.5.3                                                                                                                                  | P       |
| 4.7.4.2.3       | Induction generator based units In general no voltage support during faults and voltage steps is required from generating plants connected in LV distribution networks as the additional reactive current is expected to interfere with grid protection equipment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                  | N/A     |

Page 21 of 98

|         | EN 50549-1:2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |         |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|
| Clause  | Requirement - Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Result - Remark | Verdict |
| 4.7.4.3 | Generating plant with synchronous generating technology - Synchronous generator based units In general no voltage support during faults and voltage steps is required from generating plants connected in LV distribution networks as the additional reactive current is expected to interfere with grid protection equipment. If the responsible party requires voltage support during faults and voltage steps for generating plants of type B connected to LV distribution grids, the clause 4.7.4 of EN50549-2 applies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | Р       |
| 4.8     | EMC and power quality Similar to any other apparatus or fixed installation, generating units shall comply with the requirements on electromagnetic compatibility established in Directive 2014/30/EU or 2014/53/EU, whichever applies. EMC limits and tests, described in EN 61000 series, have been traditionally developed for loads, without taking into account the particularities of generating units, such as their capability to create overvoltages or high frequency disturbances due to the presence of power converters, which were either impossible or less frequent in case of loads.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 | Р       |
| 4.9     | Interface protection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 | Р       |
| 4.9.1   | General According to HD 60364-5-551:2010, 551.7.4, means of automatic switching shall be provided to disconnect the generating plant from the distribution network in the event of loss of that supply or deviation of the voltage or frequency at the supply terminals from values declared for normal supply. This automatic means of disconnection has following main objectives:  • prevent the power production of the generating plant to cause an overvoltage situation in the distribution network it is connected to. Such overvoltages could result in damages to the equipment connected to the distribution network as well as the distribution network itself;  • detect unintentional island situations and disconnect the generating plant in this case. This is contributing to prevent damage to other equipment, both in the producers' installations and the distribution network due to out of phase re-closing and to allow for maintenance work after an intentional disconnection of a section of the distribution network.  • assist in bringing the distribution network to a controlled state in case of voltage or frequency deviations beyond corresponding regulation values. |                 | P       |

Page 22 of 98

|        | EN 50549-1:2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                            |         |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------|--|
| Clause | Requirement - Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Result - Remark                                                                                                            | Verdict |  |
|        | <ul> <li>disconnect the generating plant from the distribution network in case of faults internal to the power generating plant. Protection against internal faults (short-circuits) shall be coordinated with network protection, according to DSO protection criteria. Protection against e.g. overload, electric shock and against fire hazards shall be implemented additionally according to HD 60364-1 and local requirements.</li> <li>prevent damages to the generating unit due to incidents (e.g. short circuits) on the distribution network Interface protections may contribute to preventing damage to the generating units due to out-of-phase reclosing of automatic reclosing which may happen after some hundreds of ms. However, in some countries some technologies of generating units are explicitly required to have an appropriate immunity level against the consequences of out-of-phase reclosing. The type of protection and the sensitivity and operating times depend upon the protection and the characteristics of the distribution network. A wide variety of approaches to achieve the above mentioned objectives is used throughout Europe. Besides the passive observation of voltage and frequency other active and passive methods are available and used to detect island situations. The requirements given in this clause are intended to provide the necessary functions for all known approaches as well as to give guidance in their use.</li> </ul> |                                                                                                                            | P       |  |
|        | Which functions are available in a product shall be stated in the product documentation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                            |         |  |
|        | The interface protection system shall comply with the requirements of this European Standard, the available functions and configured settings shall comply with the requirements of the DSO and the responsible party. In any case, the settings defined shall be understood as the values for the interface protection system, i.e. where there is a wider technical capability of the generation module, it shall not be withheld by the settings of the protections (other than the interface protection).  For micro generating plants, the interface protection system and the point of measurement might be integrated into the generating units. For generating plants with nominal current above 16 A the DSO may define a threshold above which the interface protection system shall be realized as a dedicated device and not integrated into the generating units.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Integrated into the generating units If specified by country requirement, the interface protection shall not be integrated | Р       |  |

Page 23 of 98

| EN 50549-1:2019 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |         |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------|
| Clause          | Requirement - Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Result - Remark          | Verdict |
|                 | to place the protection system as close to the point of connection as possible, to avoid tripping due to overvoltages resulting from the voltage rise within the producer's network;  • to allow for periodic field tests. In some countries periodic field tests are not required if the protection system meets the requirements of single fault safety.  The interface protection relay acts on the interface switch. The DSO may require that the interface protection relay acts additionally on another switch with a proper delay in case the interface switch fails to operate.  In case of failure of the power supply of the interface protection, the interface protection shall trigger the interface switch without delay. An uninterruptible power supply may be required by the DSO, for instance in case of UVRT capability, delay in protection etc.  In case of field adjustable settings of threshold and operation time, means shall be provided to protect the settings from unpermitted interference (e.g. password or seal) if required by the DSO. |                          | Р       |
| 4.9.2           | Void                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | N/A     |
| 4.9.3           | Requirements on voltage and frequency protection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | See appended table 4.9.3 | Р       |
| 4.9.3.1         | General Part or all of the following described functions may be required by the DSO and the responsible party. In case of three phase generating units/plants and in all cases when the protection system is implemented as an external protection system in a three phase power supply system, all phase to phase voltages and, if a neutral conductor is present, all phase to neutral voltages shall be evaluated. The frequency shall be evaluated on at least one of the voltages.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          | Р       |
|                 | If multiple signals (e.g. 3 phase to phase voltages) are to be evaluated by one protection function, this function shall evaluate all of the signals separately. The output of each evaluation shall be OR connected, so that if one signal passes the threshold of a function, the function shall trip the protection in the specified time.  The minimum required accuracy for protection is: • for frequency measurement ± 0,05 Hz; • for voltage measurement ± 1 % of Un. • The reset time shall be ≤50ms • The interface protection relay shall not conduct continuous starting and disengaging operations of the interface protection relay. Therefore a reasonable reset ratio shall be implemented which shall not be zero but be below 2% of nominal value for voltage and below 0,2Hz for frequency.                                                                                                                                                                                                                                                             |                          | Р       |

Page 24 of 98

|         | EN 50549-1:2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |         |  |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------|--|
| Clause  | Requirement - Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Result - Remark            | Verdict |  |
| 4.9.3.2 | Undervoltage protection [27] The protection shall comply with EN 60255-127. The evaluation of the r.m.s. or the fundamental value is allowed. Undervoltage protection may be implemented with two completely independent protection thresholds, each one able to be activated or not. The standard adjustment ranges are as follows.  Undervoltage threshold stage 1 [27 < ]:  • Threshold (0,2 – 1) <i>Un</i> adjustable by steps of 0,01 <i>Un</i> • Operate time (0,1 – 100) s adjustable in steps of 0,1 s Undervoltage threshold stage 2 [27 < < ]:  • Threshold (0,2 – 1) <i>Un</i> adjustable by steps of 0,01 <i>Un</i> • Operate time (0,1 – 5) s adjustable in steps of 0,05 s  The undervoltage threshold stage 2 is not applicable for micro-generating plants | See appended table 4.9.3.2 | Р       |  |
| 4.9.3.3 | Overvoltage protection [59]  The protection shall comply with EN 60255-127. The evaluation of the r.m.s. or the fundamental value is allowed. Overvoltage protection may be implemented with two completely independent protection thresholds, each one able to be activated or not. The standard adjustment ranges are as follows.  Overvoltage threshold stage 1 [59 > ]:  • Threshold (1,0 – 1,2) <i>U<sub>n</sub></i> adjustable by steps of 0,01 <i>U<sub>n</sub></i> • Operate time (0,1 – 100) s adjustable in steps of 0,1 s Overvoltage threshold stage 2 [59 > ]:  • Threshold (1,0 – 1,30) <i>U<sub>n</sub></i> adjustable by steps of 0,01 <i>U<sub>n</sub></i> • Operate time (0,1 – 5) s adjustable in steps of 0,05 s                                       | See appended table 4.9.3.3 | Р       |  |
| 4.9.3.4 | Overvoltage 10 min mean protection  The calculation of the 10 min value shall comply with the 10 min aggregation of EN 61000-4-30 Class S, but deviating from EN 61000-4-30 as a moving window is used. Therefore the function shall be based on the calculation of the square root of the arithmetic mean of the squared input values over 10 min. The calculation of a new 10 min value at least every 3 s is sufficient, which is then to be compared with the threshold value.  • Threshold (1,0 – 1,15) Un adjustable by steps of 0,01 Un • Start time ≤ 3s not adjustable  • Time delay setting = 0 ms                                                                                                                                                               | See appended table 4.9.3.4 | Р       |  |



|         | EN 50549-1:2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |         |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------|
| Clause  | Requirement - Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Result - Remark            | Verdict |
| 4.9.3.5 | Underfrequency protection [81 < ] Underfrequency protection may be implemented with two completely independent protection thresholds, each one able to be activated or not. The standard adjustment ranges are as follows. Underfrequency threshold stage 1 [81 < ]: • Threshold (47,0 – 50,0) Hz adjustment by steps of 0,1 Hz • Operate time (0,1 – 100) s adjustable in steps of 0,1 s Underfrequency threshold stage 2 [81 < < ]: • Threshold (47,0 – 50,0) Hz adjustment by steps of 0,1 Hz • Operate time (0,1 – 5) s adjustable in steps of 0,05 s In order to use narrow frequency thresholds for islanding detection (see 4.9.3.3) it may be required to have the ability to activate and deactivate a stage by an external signal. The frequency protection shall function correctly in the input voltage range between 20 % <i>Un</i> and 120 % <i>Un</i> and shall be inhibited for input voltages of less than 20 % <i>Un</i> . Under 0,2 Un the frequency protection is inhibited. Disconnection may only happen based on undervoltage protection. | See appended table 4.9.3.5 | Р       |
| 4.9.3.6 | Overfrequency protection [81 > ]  Overfrequency protection may be implemented with two completely independent protection thresholds, each one able to be activated or not. The standard adjustment ranges are as follows.  Overfrequency threshold stage 1 [81 > ]:  • Threshold (50,0 - 52,0) Hz adjustment by steps of 0,1 Hz  • Operate time (0,1 − 100) s adjustable in steps of 0,1 s Overfrequency threshold stage 2 [81 > ]:  • Threshold (50,0 - 52,0) Hz adjustment by steps of 0,1 Hz  • Operate time (0,1 - 5) s adjustable in steps of 0,05 s In order to use narrow frequency thresholds for islanding detection (see4.9.3.3) it may be required to have the ability to activate and deactivate a stage by an external signal. The frequency protection shall function correctly in the input voltage range between 20 % Un and 120 % Un and shall be inhibited for input voltages of less than 20 % Un.                                                                                                                                            | See appended table 4.9.3.6 | Р       |
| 4.9.4   | Means to detect island situation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            | Р       |
| 4.9.4.1 | General sides the passive observation of voltage and frequency further means to detect an island may be required by the DSO. Detecting islanding situations shall not be contradictory to the immunity requirements of 4.5. Commonly used functions include: • Active methods tested with a resonant circuit; • ROCOF tripping; • Switch to narrow frequency band; • Vector shift • Transfer trip. Only some of the methods above rely on standards. Namely for ROCOF tripping and for the detection of a vector shift, also called a vector jump, currently no European Standard is available.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            | Р       |
| 4.9.4.2 | Active methods tested with a resonant circuit  These are methods which pass the resonant circuit test for PV inverters according to EN 62116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | See appended table 4.9.4   | Р       |

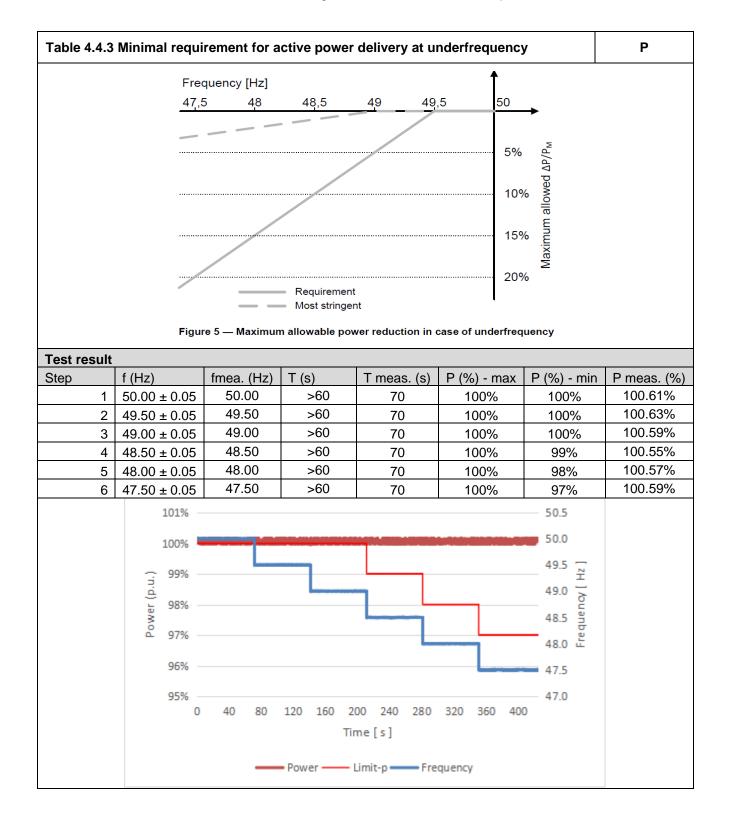


| EN 50549-1:2019 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |         |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------|
| Clause          | Requirement - Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Result - Remark           | Verdict |
| 4.9.4.3         | Switch to narrow frequency band (see Annex E and Annex F) In case of local phenomena (e.g. a fault or the opening of circuit breaker along the line) the DSO in coordination with the responsible party may require a switch to a narrow frequency band to increase the interface protection relay sensitivity. In the event of a local fault it is possible to enable activation of the restrictive frequency window (using the two underfrequency/overfrequency thresholds described in 4.9.2.5 and 4.9.2.6) correlating its activation with another additional protection function.  If required by the DSO, a digital input according to 4.9.4 shall be available to allow the DSO the activation of a restrictive frequency window by communication.                                                                                                                                                                                                                                                                                                                   |                           | Р       |
| 4.9.5           | Digital input to the interface protection If required by the DSO, the interface protection shall have at least two configurable digital inputs. These inputs can for example be used to allow transfer trip or the switching to the narrow frequency band.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           | Р       |
| 4.10            | Connection and starting to generate electrical power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           | Р       |
| 4.10.1          | General Connection and starting to generate electrical power is only allowed after voltage and frequency are within the allowed voltage and frequency ranges for at least the specified observation time. It shall not be possible to overrule these conditions.  Within these voltage and frequency ranges, the generating plant shall be capable of connecting and starting to generate electrical power.  The setting of the conditions depends on whether the connection is due to a normal operational startup or an automatic reconnection after tripping of the interface protection. In case the settings for automatic reconnection after tripping and starting to generate power are not distinct in a generating plant, the tighter range and the start-up gradient shall be used.  The frequency range, the voltage range, the observation time and the power gradient shall be field adjustable.  For field adjustable settings, means shall be provided to protect the settings from unpermitted interference (e.g. password or seal) if required by the DSO. |                           | Р       |
| 4.10.2          | Automatic reconnection after tripping  The frequency range, the voltage range, the observation time shall be adjustable in the range according to Table 3 column 2. If no settings are specified by the DSO and the responsible party, the default settings for the reconnection after tripping of the interface protection are according to Table 3 column 3. After reconnection, the active power generated by the generating plant shall not exceed a specified gradient expressed as a percentage of the active nominal power of the unit per minute. If no gradient is specified by the DSO and the responsible party, the default setting is 10 % Pn/min. Generating modules for which it is technically not feasible to increase the power respecting the specified gradient over the full power range may connect after 1 min to 10 min (randomized value, uniformly distributed) or later.                                                                                                                                                                         | See appended table 4.10.2 | Р       |



|        | EN 50549-1:2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                                                      |         |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------|
| Clause | Requirement - Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Result - Remark                                        | Verdict |
| 4.10.3 | Starting to generate electrical power  The frequency range, the voltage range, the observation time shall be adjustable in the range according to Table 4 column 2. If no settings are specified by the DSO and the responsible party, the default settings for connection or starting to generate electrical power due to normal operational startup or activity are according to Table 4 column 3. If applicable, the power gradient shall not exceed the maximum gradient specified by the DSO and the responsible party. Heat driven CHP generating units do not need to keep a maximum gradient, since the start up is randomized by the nature of the heat demand.  For manual operations performed on site (e.g. for the purpose of initial start-up or maintenance) it is permitted to deviate from the observation time and ramp rate.                                                | See appended table 4.10.3 Default settings are applied | Р       |
| 4.10.4 | Synchronization Synchronizing a generating plant/unit with the distribution network shall be fully automatic i.e. it shall not be possible to manually close the switch between the two systems to carry out synchronization.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        | Р       |
| 4.11   | Ceasing and reduction of active power on set point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        | Р       |
| 4.11.1 | Ceasing active power Generating plants with a maximum capacity of 0,8 kW or more shall be equipped with a logic interface (input port) in order to cease active power output within five seconds following an instruction being received at the input port. If required by the DSO and the responsible party, this includes remote operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | See appended table 4.11                                | р       |
| 4.11.2 | Reduction of active power on set point  For generating modules of type B, a generating plant shall be capable of reducing its active power to a limit value provided remotely by the DSO. The limit value shall be adjustable in the complete operating range from the maximum active power to minimum regulating level.  The adjustment of the limit value shall be possible with a maximum increment of 10% of nominal power.  A generation unit/plant shall be capable of carrying out the power output reduction to the respective limit within an envelope of not faster than 0,66 % <i>P</i> <sub>n</sub> / s and not slower than 0,33 % <i>P</i> <sub>n</sub> / s with an accuracy of 5 % of nominal power.  Generating plants are permitted to disconnect from the network at a limit value below it minimum regulating level. If required by the DSO, this includes remote operation. | See appended table 4.11                                | Р       |
| 4.12   | Remote information exchange Generating plants whose power is above a threshold to be determined by the DSO and the responsible party shall have the capacity to be monitored by the DSO or TSO control centre or control centres as well as receive operation parameter settings for the functions specified in this European Standard from the DSO or TSO control centre or control centres.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        | N/A     |




| EN 50549-1:2019 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |         |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|
| Clause          | Requirement - Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Result - Remark | Verdict |
| 4.13            | Requirements regarding single fault tolerance of interface protection system and interface switch  If required in 4.3.2, the interface protection system and the interface switch shall meet the requirements of single fault tolerance.  A single fault shall not lead to a loss of the safety functions. Faults of common cause shall be taken into account if the probability for the occurrence of such a fault is significant. Whenever reasonably practical, the individual fault shall be displayed and lead to the disconnection of the power generating unit or system.  Series-connected switches shall each have a independent breaking capacity corresponding to the rated current of the generating unit and corresponding to the short circuit contribution of the generating unit.  The short-time withstand current of the switching devices shall be coordinated with maximum short circuit power at the connection point.  At least one of the switches shall be a switch-disconnector suitable for overvoltage category 2. For single-phase generating units, the switch shall have one contact of this overvoltage category for both the neutral conductor and the line conductor. For poly-phase generating units, it is required to have one contact of this overvoltage category for all active conductors. The second switch may be formed of electronic switching components from an inverter bridge or another circuit provided that the electronic switching components can be switched off by control signals and that it is ensured that a failure is detected and leads to prevention of the operation at the latest at the next reconnection.  For PV-inverters without simple separation between the network and the PV generating unit (e.g. PV Inverter without transformer) both switches mentioned in the paragraph above shall be switchdisconnectors with the requirements described therein, although one switching device is permitted to be located between PV array and PV inverter. |                 | P       |
| Annex A         | Interconnection guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 | Info    |
| Annex B         | Void  Personator Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 | Info    |
| Annex C         | Parameter Table  List of national requirements applicable for generating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 | Info    |
| Annex D         | plants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 | Info    |
| Annex E         | Loss of Mains and overall power system security                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | Info    |
| Annex F         | Examples of protection strategies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | Info    |
| Annex H         | Relationship between this European standard and the COMMISSION REGULATION (EU) 2016/631                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | Info    |



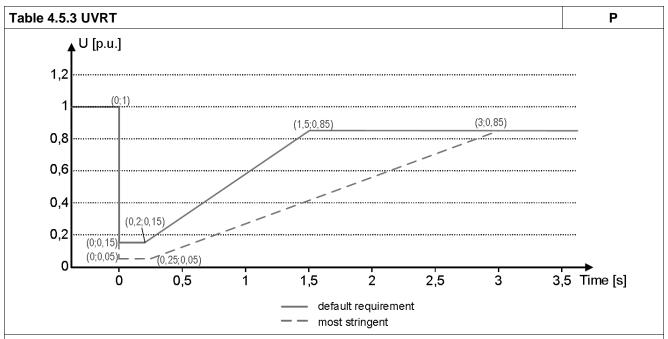
# **Appendices Table-Testing Result**

| rating frequency range | е                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Р                                               |  |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--|
| Frequency range        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | eriod for operation<br>Jent requirement         |  |
| 47.0 Hz – 47.5 H       | lz                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Not required                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                 |  |
| 47.5 Hz - 48.5H        | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30 min <sup>a</sup>                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 90 min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |  |
| 48.5 Hz - 49.0 H       | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30 min <sup>a</sup>                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 90 min <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                 |  |
| 49.0 Hz - 51.0 H       | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unlimited 30 min <sup>a</sup> Not required                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Unlimited                                       |  |
| 51.0 Hz - 51.5 H       | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90 min                                          |  |
| 51.5 Hz - 52.0 H       | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15 min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |  |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ne periods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | periods are required by                         |  |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Result                                          |  |
| 47.000                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20s                                                                                                                                                                                                                                                                                          | >20s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pass                                            |  |
| 47.500                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 90min                                                                                                                                                                                                                                                                                        | >90min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pass                                            |  |
| 48.500                 | 90min                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                              | >90min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pass                                            |  |
| 51.500                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 90min >90min 90min                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pass                                            |  |
| 52.000                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pass                                            |  |
| 00 47.000              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15min >15r                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pass                                            |  |
| 2000                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10000 Time [ s ]                                                                                                                                                                                                                                                                             | 15000<br>ency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 53.0<br>52.0<br>51.0<br>50.0<br>49.0<br>48.0<br>47.0<br>46.0<br>20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Frequency [ Hz ]                                |  |
|                        | Frequency rang  47.0 Hz - 47.5 H  47.5 Hz - 48.5H  48.5 Hz - 49.0 H  49.0 Hz - 51.0 H  51.0 Hz - 51.5 H  51.5 Hz - 52.0 H  a: Respecting the legal of the responsible party  F (Hz)- measure  47.000  47.500  48.500  51.500  52.000  47.000  7000  6000  7000  6000  7000  6000  7000  6000  7000  6000  7000  6000  7000  6000  7000  6000  7000  6000  7000  6000  7000  6000  7000  6000  7000  6000  7000  6000  7000  6000  7000  6000  7000  6000  7000  6000  7000  6000 | 47.0 Hz - 47.5 Hz  47.5 Hz - 48.5 Hz  48.5 Hz - 49.0 Hz  49.0 Hz - 51.0 Hz  51.0 Hz - 51.5 Hz  51.5 Hz - 52.0 Hz  a: Respecting the legal framer The responsible party in some F (Hz)- measure Time 47.000  47.500  48.500  51.500  52.000  47.000  7000  6000  5000  4000  5000  5000  5000 | Frequency range  47.0 Hz - 47.5 Hz  Not re  47.5 Hz - 48.5 Hz  30.0  48.5 Hz - 49.0 Hz  30.0  51.0 Hz - 51.0 Hz  30.0  51.5 Hz - 52.0 Hz  30.0  31.5 Hz - 52.0 Hz  31.5 Hz - 52.0 Hz  32.7  33.0  34.5 Hz - 49.0 Hz  35.5 Hz - 52.0 Hz  36.0  37.5 Hz - 52.0 Hz  37.5 Hz - 52.0 Hz  38.5 Hz - 52.0 Hz  39.5 Hz  47.000  20s  47.5 Hz  47.000  20s  47.5 Hz  47.000  90min  51.5 Hz  51.5 Hz | Frequency range         Time period for operation Minimum requirement           47.0 Hz - 47.5 Hz         Not required           47.5 Hz - 48.5Hz         30 min a           48.5 Hz - 49.0 Hz         30 min a           49.0 Hz - 51.0 Hz         Unlimited           51.0 Hz - 51.5 Hz         30 min a           51.5 Hz - 52.0 Hz         Not required           a: Respecting the legal framework, it is possible that longer tin The responsible party in some synchronous areas,         F (Hz)- measure         Time (S)-limit         Time (S)           47.000         20s         >20s           47.500         90min         >90min           48.500         90min         >90min           51.500         90min         >90min           52.000         90min         >90min           47.000         15min         >15min | Time period for operation   Minimum requirement |  |








| Step         | Vol          | tago (9/ )     |                 |                   |                   | l .            |
|--------------|--------------|----------------|-----------------|-------------------|-------------------|----------------|
| 1            | Vol          | tago (9/1)     |                 |                   |                   |                |
| •            |              | tage (%)       | P (%)           | P meas. (%)       | Time (s)          | T meas (s)     |
| _            |              | 100            | 100             | 100.32            | >60               | 85             |
| 2            |              | 85             | 100 (*)         | 90.77             | >120              | 170            |
| 3            |              | 100            | 100             | 100.23            | >5                | 30             |
| 4            |              | 110            | 100             | 100.57            | >120              | 180            |
| *) Active po | wer rec      | duction is all | owed due to cur | rent limitation.  |                   |                |
|              |              | 102%           |                 |                   | 120%              |                |
|              |              | 100%           |                 | A Juneary         | 110%              |                |
|              | (p.u.)       | 98%            |                 |                   | 100%              | (b.u.)         |
|              | Power (p.u.) | 96%            |                 |                   | 90%               | Voltage (p.u.) |
|              | ۵            | 94%            |                 |                   | 80%               | >              |
|              |              | 92% ———        |                 |                   | 70%               |                |
|              |              | 90% — 0 40     | 80 120 160      | 200 240 280 320 3 | 60%<br>60 400 440 |                |
|              |              | 0 40           | , 60 120 100    | Time [s]          | 00 400 440        |                |

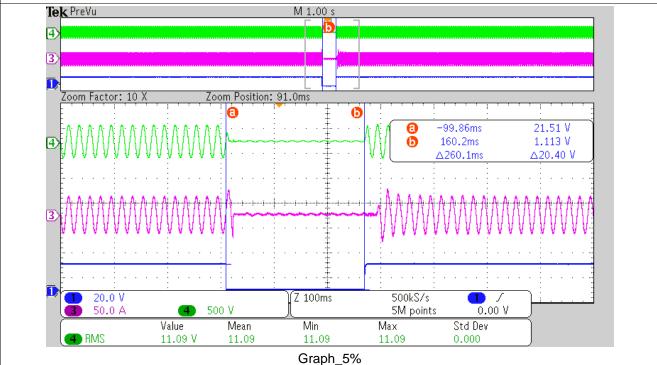
Power — Voltage



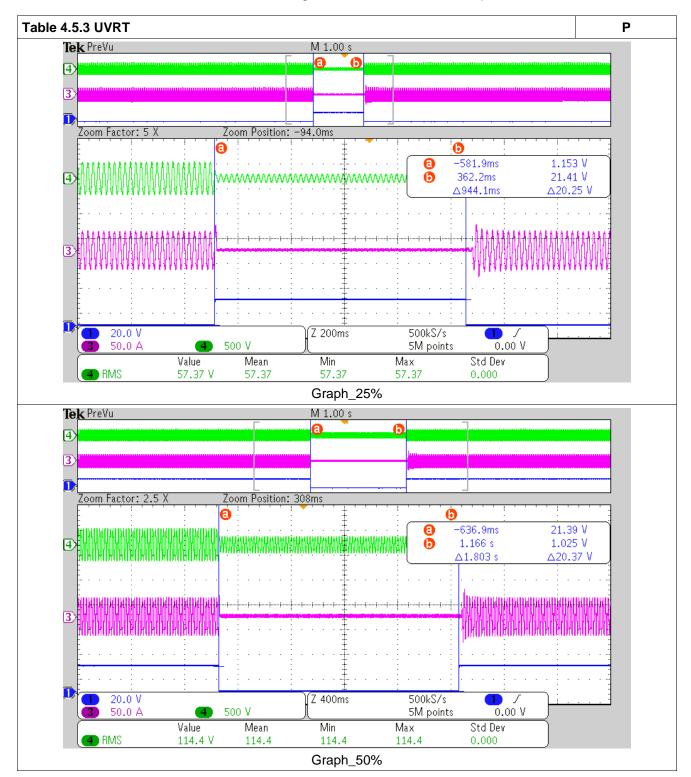
| Table 4.5.2 Rate of change of frequency (ROCOF) |           |         |                    |                | Р            |                |           |
|-------------------------------------------------|-----------|---------|--------------------|----------------|--------------|----------------|-----------|
| Test result                                     |           |         |                    |                |              |                | L         |
| Steps                                           | f (Hz)    |         | Δt (s) step change | Step time      | f meas. (Hz) | t              | meas. (s) |
| 1                                               | 50.00 ±   | ± 0.05  |                    | >10 s          | 50.00        |                | 30        |
| 2                                               | 52.00 ±   |         | < 1 s              | >10 s          | 52.00        |                | 30        |
| 3                                               | 50.00 ±   |         | < 1 s              | >10 s          | 50.00        |                | 30        |
| 4                                               |           |         | < 1 s              | >10 s          | 48.00        |                | 30        |
| 5                                               | 50.00 ±   | ± 0.05  | <1s                | >10 s          | 50.00        |                | 30        |
|                                                 |           | 7000    |                    |                | 53.          | .0             |           |
|                                                 |           | 6000    |                    |                |              | 0              |           |
|                                                 |           |         |                    |                | 52.          | .0             |           |
|                                                 |           | 5000    |                    |                | 51.          | .0 🖁           |           |
|                                                 | Power [ W | 4000    |                    |                |              | Frequency [Hz  |           |
|                                                 | Wer       | 3000    |                    |                | 50.          | nen u          |           |
|                                                 |           | 20.00   |                    |                | 49.          | .0 9           |           |
|                                                 |           | 2000 —— |                    |                |              |                |           |
|                                                 |           | 1000    |                    |                | 48.          | .0             |           |
|                                                 |           | 0 —     |                    |                | 47.          | .0             |           |
|                                                 |           | 0       | 30 60              | 90 120         | 150          |                |           |
|                                                 |           |         | T                  | ime [ s ]      |              |                |           |
|                                                 |           |         |                    |                |              |                |           |
|                                                 |           |         | Powe               | r Frequency    |              |                |           |
|                                                 |           | 7000 —  |                    |                | 52.          | .5             |           |
|                                                 |           | 6000 —  |                    |                | 52.          | .0             |           |
|                                                 |           | 5000 —— |                    | _/             | 51.          | .5 🔽           |           |
|                                                 | [×        | 4000 —— |                    |                | 51.          | Frequency [Hz] |           |
|                                                 | Power [ W | 3000 —— |                    | /              | 50.          | nenc           |           |
|                                                 |           | 2000 —  | /                  |                | 50.          | Frec 0.        |           |
|                                                 |           | 1000    |                    |                | 49.          |                |           |
|                                                 |           | 0 —     |                    |                | 49.          | 0              |           |
|                                                 |           | 30      | 31                 | 32 33          | 34           | .0             |           |
|                                                 |           |         |                    | ime [ s ]      |              |                |           |
|                                                 |           |         | - Powe             | r —— Frequency |              |                |           |
|                                                 |           |         | Powe               | . Trequency    |              |                |           |



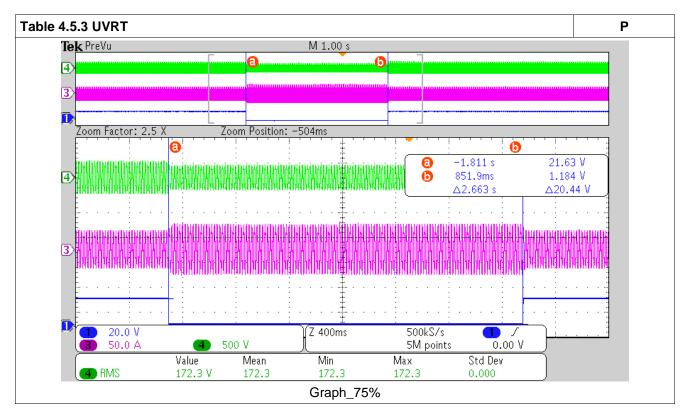



# **Test result**

# Test at full load (>90%)


|      | _          |             |              |               |
|------|------------|-------------|--------------|---------------|
| Udip | t min (ms) | U meas. (V) | T meas. (ms) | P recover (s) |
| 5%   | 250        | 4.82%       | 260.1        | 0.064         |
| 25%  | 938        | 24.94%      | 944.1        | 0.070         |
| 50%  | 1797       | 49.74%      | 1803.0       | 0.062         |
| 75%  | 2656       | 74.91%      | 2663.0       | 0.042         |

# Remark:


The tests are performed together with clause 4.7.4.2.2 Zero current mode and enabling of default setting: Undervoltage of 50%Un.



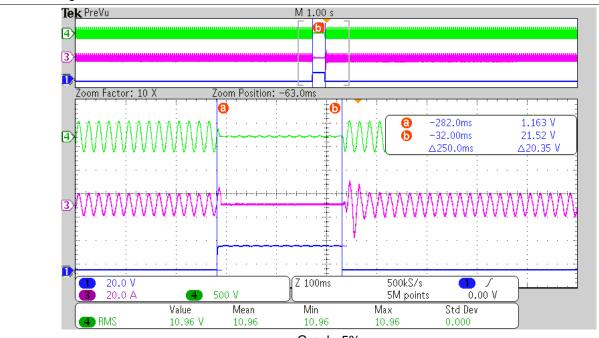


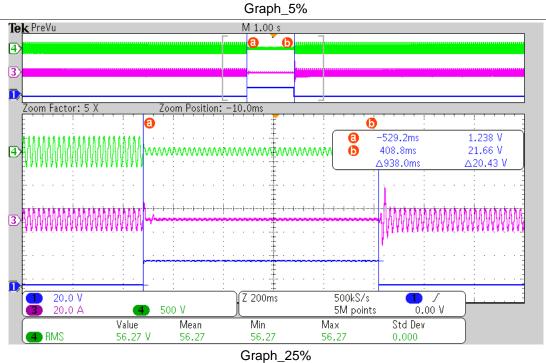




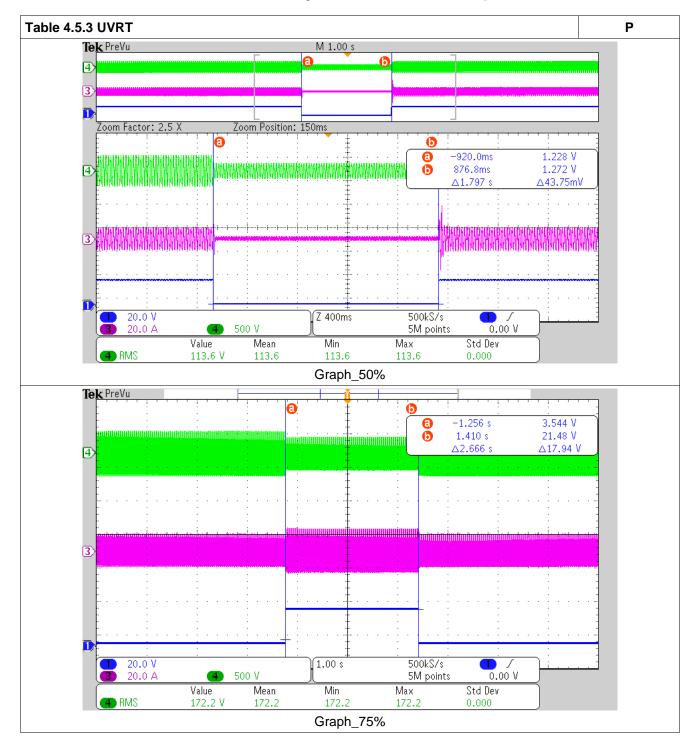





| Table 4.5.3 UVRT | Р |
|------------------|---|
| Test result      |   |


# Test at partial load (30%)

| Udip | t min (ms) | U meas. (V) | T meas. (ms) | P recover (s) |  |
|------|------------|-------------|--------------|---------------|--|
| 5%   | 250        | 4.77%       | 250.0        | 0.012         |  |
| 25%  | 938        | 24.47%      | 938.0        | 0.042         |  |
| 50%  | 1797       | 49.39%      | 1797.0       | 0.036         |  |
| 75%  | 2656       | 74.87%      | 2666.0       | 0.018         |  |


#### Remark:

The tests are performed together with clause 4.7.4.2.2 Zero current mode and enabling of default setting: Undervoltage of 50%Un.











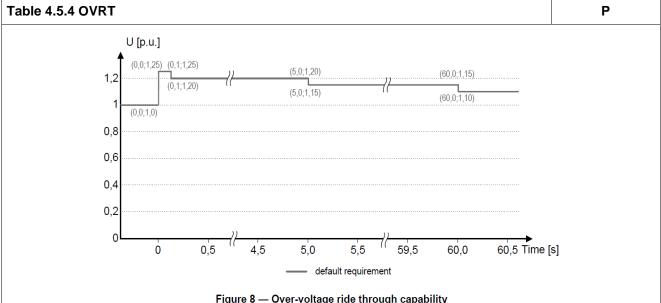
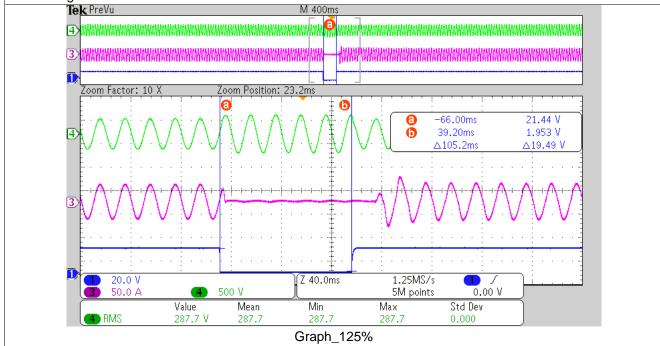
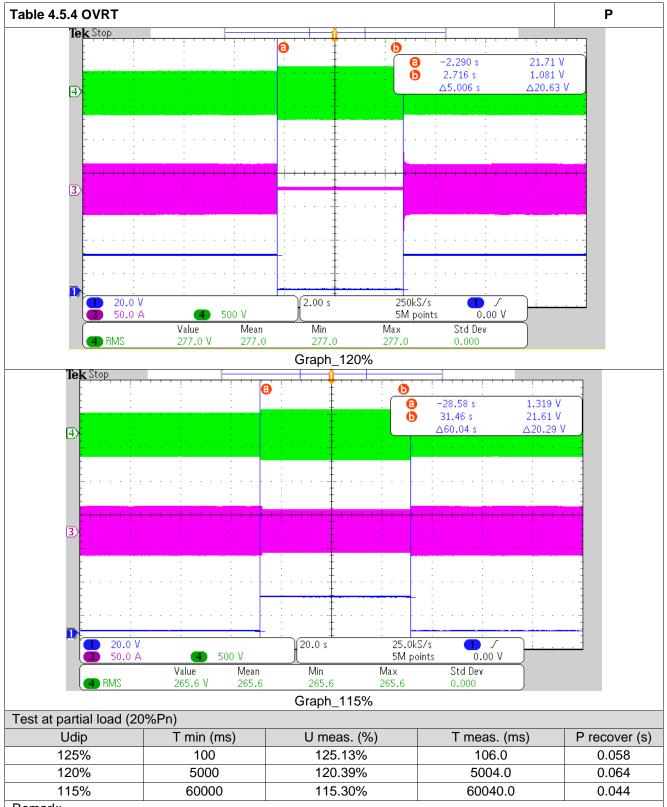



Figure 8 — Over-voltage ride through capability


#### **Test result**

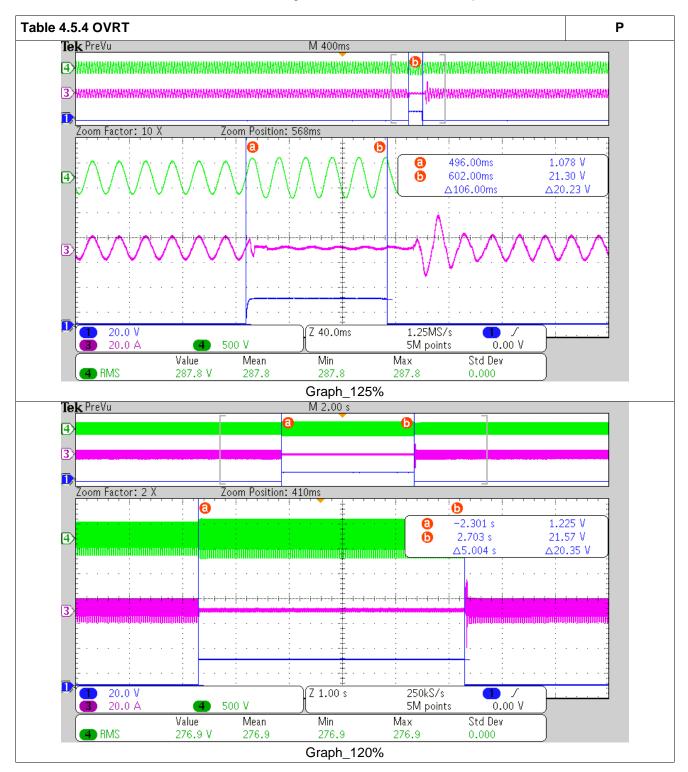
# Test at full load (>90%)


| Udip | t min (ms) | U meas. (%) | T meas. (ms) | P recover (s) |
|------|------------|-------------|--------------|---------------|
| 125% | 100        | 125.09%     | 105.2        | 0.059         |
| 120% | 5000       | 120.43%     | 5006         | 0.064         |
| 115% | 60000      | 115.48%     | 60040        | 0.045         |

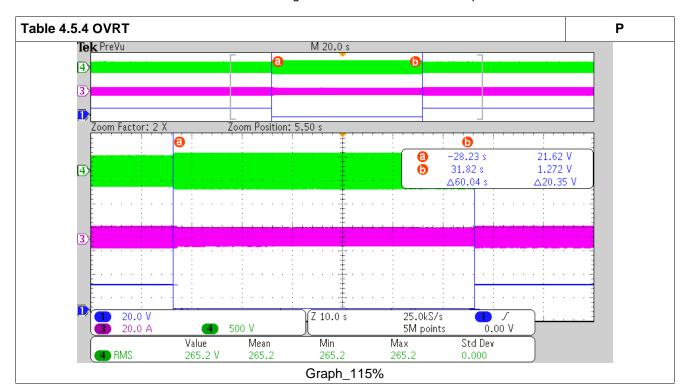
### Remark:

The tests are performed together with clause 4.7.4.2.2 Zero current mode and enabling of default setting: Overvoltage of 120%Un.









#### Remark:

The tests are performed together with clause 4.7.4.2.2 Zero current mode and enabling of default setting: Overvoltage of 120%Un.



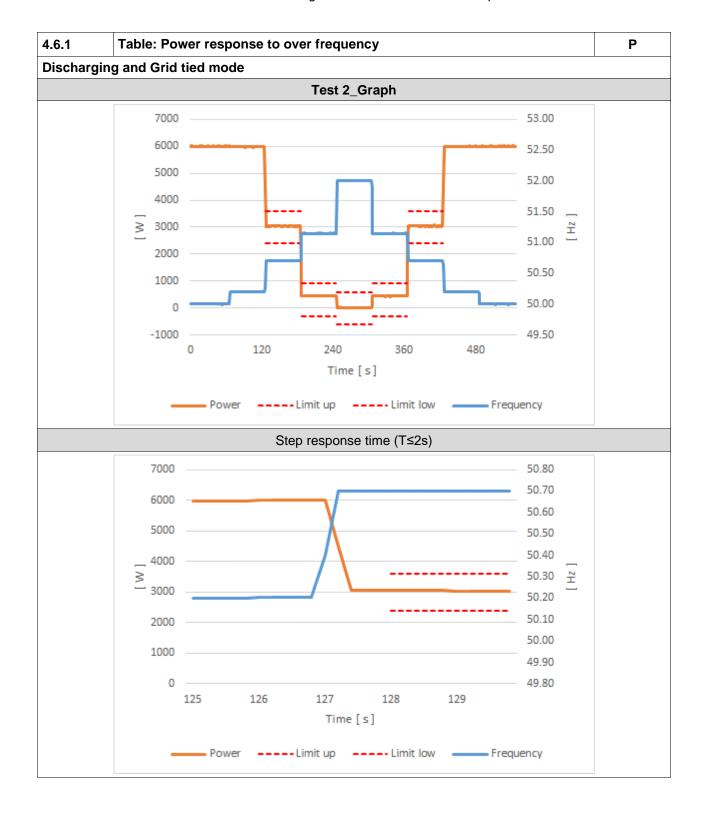


# Page 41 of 98

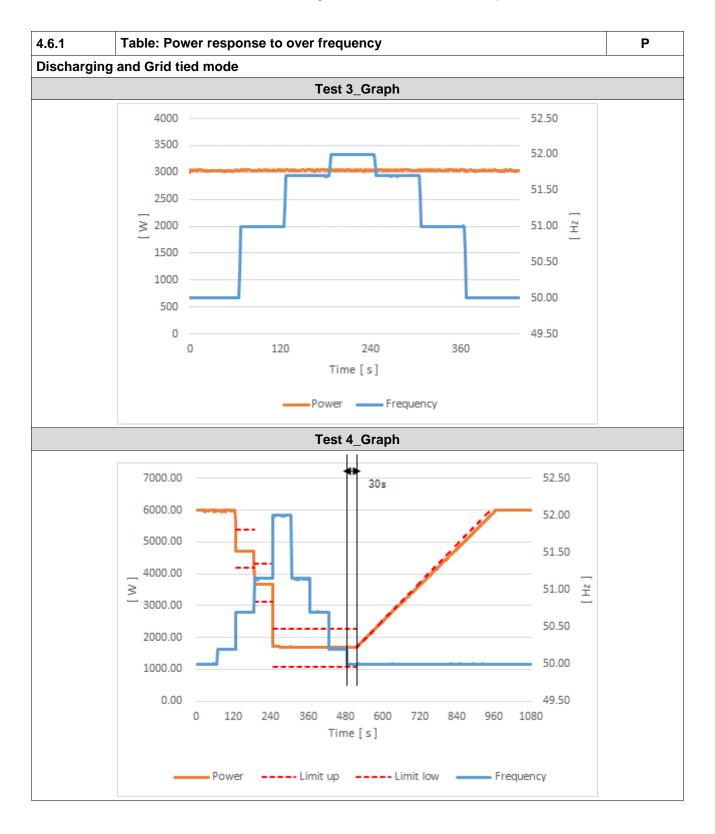



Page 42 of 98

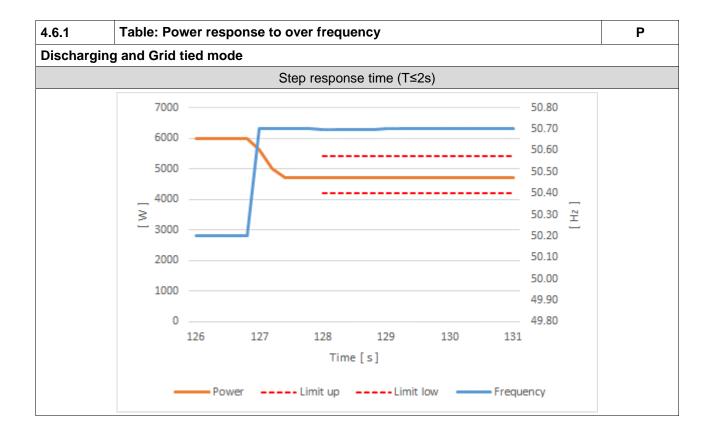
| 4.6.1 Table: F    | Power res                                                             | sponse to ov                    | er frequency                                                 |                                                                  |                        |                                                  | Р                                     |  |  |
|-------------------|-----------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------|------------------------------------------------------------------|------------------------|--------------------------------------------------|---------------------------------------|--|--|
| Discharging and G | rid tied m                                                            | node                            |                                                              |                                                                  |                        |                                                  |                                       |  |  |
|                   | 100% Pn, f1 =50.2Hz; droop=12%; f-stop deactivated, with delay of 2 s |                                 |                                                              |                                                                  |                        |                                                  |                                       |  |  |
| Test 1            | f (Hz)                                                                | Measured<br>output<br>Power (W) | Calculated<br>from standard<br>characteristic<br>curve P (W) | Tolerance<br>between<br>measured<br>P and<br>calculated<br>P (W) | Tolerance<br>Limit (W) | For a reduction of active power of 50% Pmax T≤2s | For a reduction of active power T≤20s |  |  |
| 50Hz ± 0.01Hz     | 50.00                                                                 | 6000.12                         | 6000.00                                                      |                                                                  |                        |                                                  |                                       |  |  |
| 50.2Hz ± 0.01Hz   | 50.20                                                                 | 5992.57                         | 6000.00                                                      |                                                                  |                        |                                                  |                                       |  |  |
| 50.70Hz ± 0.01Hz  | 50.70                                                                 | 5541.86                         | 5500.00                                                      | 41.86                                                            | ± 600                  | 1.4s                                             | 1.6s                                  |  |  |
| 51.15Hz ± 0.01Hz  | 51.15                                                                 | 5123.49                         | 5050.00                                                      | 73.49                                                            | ± 600                  | 0.4s                                             | 0.6s                                  |  |  |
| 52.0Hz ± 0.01Hz   | 52.00                                                                 | 4273.08                         | 4200.00                                                      | 73.08                                                            | ± 600                  | 0.2s                                             | 0.4s                                  |  |  |
| 51.15Hz ± 0.01Hz  | 51.15                                                                 | 5123.12                         | 5050.00                                                      | 73.12                                                            | ± 600                  | 0.2s                                             | 0.4s                                  |  |  |
| 50.70Hz ± 0.01Hz  | 50.70                                                                 | 5532.31                         | 5500.00                                                      | 32.31                                                            | ± 600                  | 0.4s                                             | 0.6s                                  |  |  |
| 50.2Hz ± 0.01Hz   | 50.20                                                                 | 5992.97                         | 6000.00                                                      |                                                                  |                        | 0.4s                                             | 0.6s                                  |  |  |
| 50Hz ± 0.01Hz     | 50.00                                                                 | 6001.99                         | 6000.00                                                      |                                                                  |                        |                                                  |                                       |  |  |
|                   | 100% Pn, f1 =50.2Hz; droop=2%; f-stop deactivated, no delay           |                                 |                                                              |                                                                  |                        |                                                  |                                       |  |  |
| Test 2            | f (Hz)                                                                | Measured<br>output<br>Power (W) | Calculated<br>from standard<br>characteristic<br>curve P (W) | Tolerance<br>between<br>measured<br>P and<br>calculated<br>P (W) | Tolerance<br>Limit (W) | For a reduction of active power of 50% Pmax T≤2s | For a reduction of active power T≤20s |  |  |
| 50Hz ± 0.01Hz     | 50.00                                                                 | 6002.55                         |                                                              |                                                                  |                        |                                                  |                                       |  |  |
| 50.2Hz ± 0.01Hz   | 50.20                                                                 | 5961.62                         |                                                              |                                                                  |                        |                                                  |                                       |  |  |
| 50.70Hz ± 0.01Hz  | 50.70                                                                 | 3017.67                         | 3000.00                                                      | 17.67                                                            | ± 600                  | 0.2s                                             | 0.4s                                  |  |  |
| 51.15Hz ± 0.01Hz  | 51.15                                                                 | 451.08                          | 300.00                                                       | 151.08                                                           | ± 600                  | 0.4s                                             | 0.6s                                  |  |  |
| 52.0Hz ± 0.01Hz   | 52.00                                                                 | 21.92                           | 0.00                                                         | 21.92                                                            | ± 600                  | 0.2s                                             | 0.4s                                  |  |  |
| 51.15Hz ± 0.01Hz  | 51.15                                                                 | 467.10                          | 300.00                                                       | 167.10                                                           | ± 600                  | 0.2s                                             | 0.4s                                  |  |  |
| 50.70Hz ± 0.01Hz  | 50.70                                                                 | 3067.00                         | 3000.00                                                      | 67.00                                                            | ± 600                  | 0.2s                                             | 0.4s                                  |  |  |
| 50.2Hz ± 0.01Hz   | 50.20                                                                 | 5995.72                         |                                                              |                                                                  |                        | 0.2s                                             | 0.4s                                  |  |  |
| 50Hz ± 0.01Hz     | 50.00                                                                 | 6000.32                         |                                                              |                                                                  |                        |                                                  |                                       |  |  |




| 4.6.1 Table:      | Power res                                                                          | sponse to ov                    | er frequency                                                 |                                                                  |                        |                                                  | Р                                     |  |  |  |
|-------------------|------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------|------------------------------------------------------------------|------------------------|--------------------------------------------------|---------------------------------------|--|--|--|
| Discharging and G | rid tied m                                                                         | node                            |                                                              |                                                                  |                        | 1                                                |                                       |  |  |  |
|                   | 50% Pn, f1 =52.0Hz; droop=5%; f-stop deactivated, no delay                         |                                 |                                                              |                                                                  |                        |                                                  |                                       |  |  |  |
| Test 3            | f (Hz)                                                                             | Measured<br>output<br>Power (W) | Calculated<br>from standard<br>characteristic<br>curve P (W) | Tolerance<br>between<br>measured<br>P and<br>calculated<br>P (W) | Tolerance<br>Limit (W) | For a reduction of active power of 50% Pmax T≤2s | For a reduction of active power T≤20s |  |  |  |
| 50Hz ± 0.01Hz     | 50.00                                                                              | 3033.83                         |                                                              |                                                                  |                        |                                                  |                                       |  |  |  |
| 51.0Hz ± 0.01Hz   | 51.00                                                                              | 3040.12                         | 3000.00                                                      | 40.12                                                            | ± 600                  |                                                  |                                       |  |  |  |
| 51.70Hz ± 0.01Hz  | 51.70                                                                              | 3040.51                         | 3000.00                                                      | 40.51                                                            | ± 600                  |                                                  |                                       |  |  |  |
| 52.0Hz ± 0.01Hz   | 52.00                                                                              | 3041.93                         | 3000.00                                                      | 41.93                                                            | ± 600                  |                                                  |                                       |  |  |  |
| 51.70Hz ± 0.01Hz  | 51.70                                                                              | 3041.66                         | 3000.00                                                      | 41.66                                                            | ± 600                  |                                                  |                                       |  |  |  |
| 51.00Hz ± 0.01Hz  | 51.00                                                                              | 3041.98                         | 3000.00                                                      | 41.98                                                            | ± 600                  |                                                  |                                       |  |  |  |
| 50Hz ± 0.01Hz     | 50.00                                                                              | 3036.21                         |                                                              |                                                                  |                        |                                                  |                                       |  |  |  |
|                   | 100% Pn, f1 =50.2Hz; droop=5%; f-stop =50.1, no delay, Deactivation time tstop 30s |                                 |                                                              |                                                                  |                        |                                                  |                                       |  |  |  |
| Test 4            | f (Hz)                                                                             | Measured<br>output<br>Power (W) | Calculated<br>from standard<br>characteristic<br>curve P (W) | Tolerance<br>between<br>measured<br>P and<br>calculated<br>P (W) | Tolerance<br>Limit (W) | For a reduction of active power of 50% Pmax T≤2s | For a reduction of active power T≤20s |  |  |  |
| 50Hz ± 0.01Hz     | 50.00                                                                              | 5993.25                         | 6000                                                         |                                                                  |                        |                                                  |                                       |  |  |  |
| 50.2Hz ± 0.01Hz   | 50.20                                                                              | 5983.82                         | 6000                                                         |                                                                  |                        |                                                  |                                       |  |  |  |
| 50.70Hz ± 0.01Hz  | 50.70                                                                              | 4698.45                         | 4800                                                         | -101.55                                                          | ± 600                  | 0.2s                                             | 0.6s                                  |  |  |  |
| 51.15Hz ± 0.01Hz  | 51.15                                                                              | 3663.67                         | 3720                                                         | -56.33                                                           | ± 600                  | 0.4s                                             | 0.6s                                  |  |  |  |
| 52.0Hz ± 0.01Hz   | 52.00                                                                              | 1705.47                         | 1680                                                         | 25.47                                                            | ± 600                  | 0.4s                                             | 0.4s                                  |  |  |  |
| 51.15Hz ± 0.01Hz  | 51.15                                                                              | 1693.65                         | 1680                                                         | 13.65                                                            | ± 600                  |                                                  |                                       |  |  |  |
| 50.70Hz ± 0.01Hz  | 50.70                                                                              | 1693.60                         | 1680                                                         | 13.60                                                            | ± 600                  |                                                  |                                       |  |  |  |
| 50.2Hz ± 0.01Hz   | 50.20                                                                              | 1693.39                         | 1680                                                         |                                                                  | ± 600                  |                                                  |                                       |  |  |  |
| 50Hz ± 0.01Hz     | 50.00                                                                              | 5999.72                         | 6000                                                         |                                                                  |                        |                                                  |                                       |  |  |  |











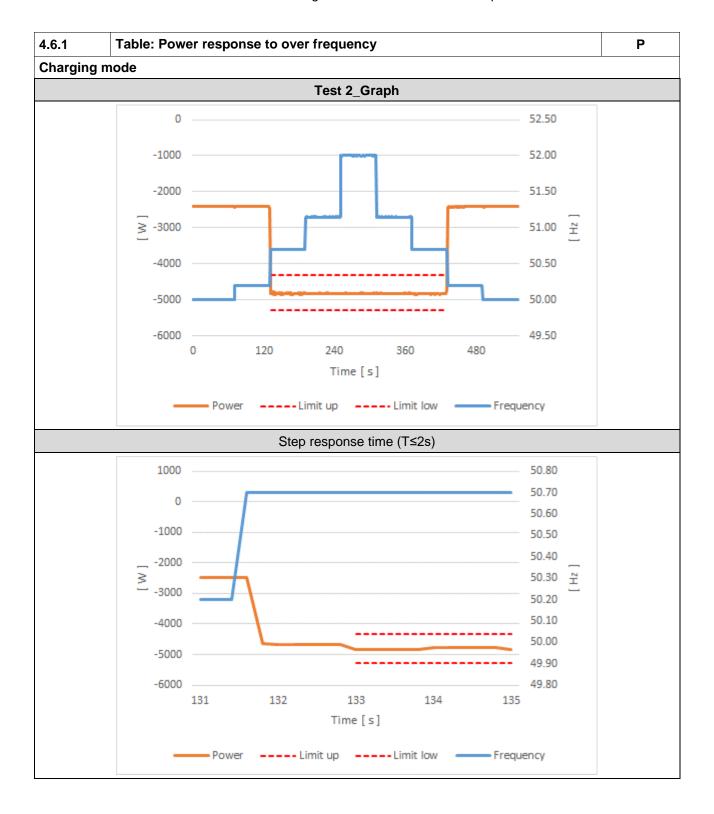




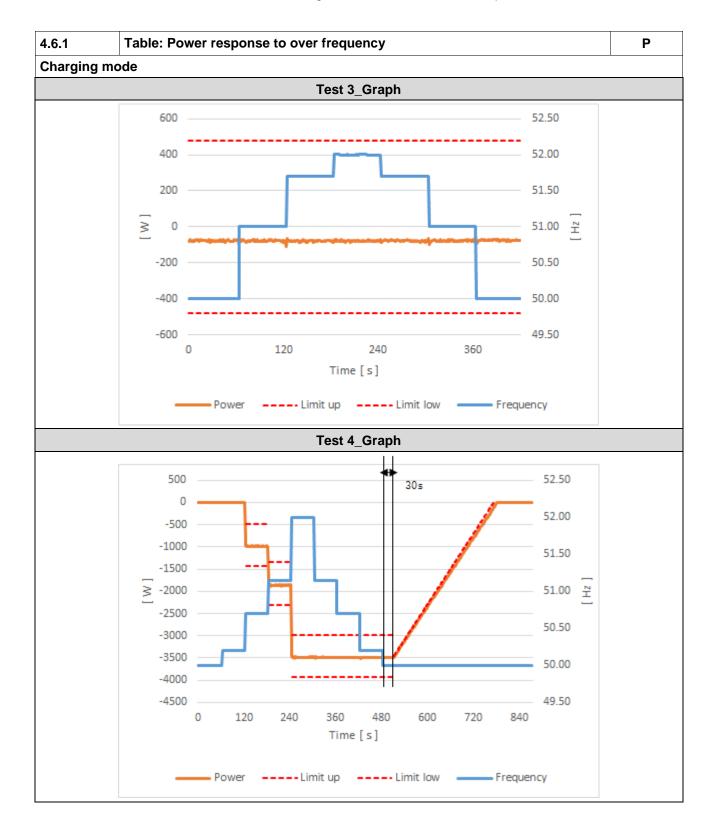




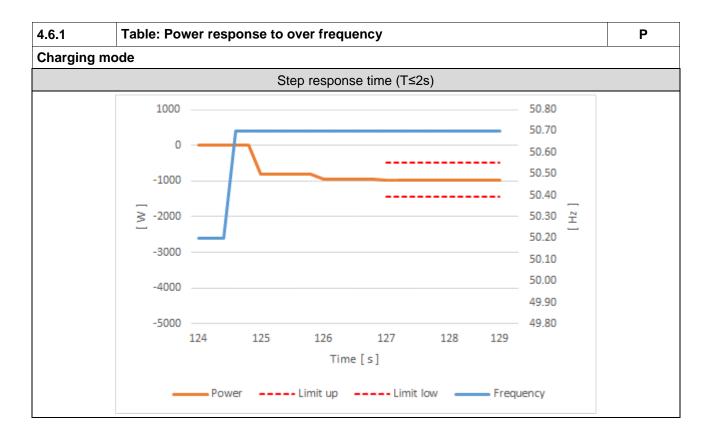
| 4.6.1 Table:     | Power res                                                   | sponse to ov                    | er frequency                                                 |                                                                  |                        |                                                  | Р                                     |  |  |  |
|------------------|-------------------------------------------------------------|---------------------------------|--------------------------------------------------------------|------------------------------------------------------------------|------------------------|--------------------------------------------------|---------------------------------------|--|--|--|
| Charging mode    |                                                             |                                 |                                                              |                                                                  |                        | 1                                                |                                       |  |  |  |
|                  | -                                                           | 50% Pn, f1 =                    | 50.2Hz; droop=                                               |                                                                  | deactivated,           |                                                  | f2s                                   |  |  |  |
| Test 1           | f (Hz)                                                      | Measured<br>output<br>Power (W) | Calculated<br>from standard<br>characteristic<br>curve P (W) | Tolerance<br>between<br>measured<br>P and<br>calculated<br>P (W) | Tolerance<br>Limit (W) | For a reduction of active power of 50% Pmax T≤2s | For a reduction of active power T≤20s |  |  |  |
| 50Hz ± 0.01Hz    | 50.00                                                       | -2409.58                        | -2400                                                        |                                                                  |                        |                                                  |                                       |  |  |  |
| 50.2Hz ± 0.01Hz  | 50.20                                                       | -2409.09                        | -2400                                                        |                                                                  |                        |                                                  |                                       |  |  |  |
| 50.70Hz ± 0.01Hz | 50.70                                                       | -2792.75                        | -2800                                                        | 7.25                                                             | ± 480                  | 1.0s                                             | 1.6s                                  |  |  |  |
| 51.15Hz ± 0.01Hz | 51.15                                                       | -3144.90                        | -3160                                                        | 15.10                                                            | ± 480                  | 0.2s                                             | 0.6s                                  |  |  |  |
| 52.0Hz ± 0.01Hz  | 52.00                                                       | -3806.88                        | -3840                                                        | 33.12                                                            | ± 480                  | 0.2s                                             | 0.4s                                  |  |  |  |
| 51.15Hz ± 0.01Hz | 51.15                                                       | -3143.45                        | -3160                                                        | 16.55                                                            | ± 480                  | 0.2s                                             | 0.4s                                  |  |  |  |
| 50.70Hz ± 0.01Hz | 50.70                                                       | -2793.95                        | -2800                                                        | 6.05                                                             | ± 480                  | 0.2s                                             | 0.4s                                  |  |  |  |
| 50.2Hz ± 0.01Hz  | 50.20                                                       | -2411.40                        | -2400                                                        |                                                                  |                        | 0.4s                                             | 0.6s                                  |  |  |  |
| 50Hz ± 0.01Hz    | 50.00                                                       | -2410.66                        | -2400                                                        |                                                                  |                        |                                                  |                                       |  |  |  |
|                  | -50% Pn, f1 =50.2Hz; droop=2%; f-stop deactivated, no delay |                                 |                                                              |                                                                  |                        |                                                  |                                       |  |  |  |
| Test 2           | f (Hz)                                                      | Measured<br>output<br>Power (W) | Calculated<br>from standard<br>characteristic<br>curve P (W) | Tolerance<br>between<br>measured<br>P and<br>calculated<br>P (W) | Tolerance<br>Limit (W) | For a reduction of active power of 50% Pmax T≤2s | For a reduction of active power T≤20s |  |  |  |
| 50Hz ± 0.01Hz    | 50.00                                                       | -2409.55                        | -2400                                                        |                                                                  |                        |                                                  |                                       |  |  |  |
| 50.2Hz ± 0.01Hz  | 50.20                                                       | -2409.75                        | -2400                                                        |                                                                  |                        |                                                  |                                       |  |  |  |
| 50.70Hz ± 0.01Hz | 50.70                                                       | -4821.73                        | -4800                                                        | -21.73                                                           | ± 480                  | 0.4s                                             | 0.8s                                  |  |  |  |
| 51.15Hz ± 0.01Hz | 51.15                                                       | -4824.62                        | -4800                                                        | -24.62                                                           | ± 480                  | 0.4s                                             | 0.4s                                  |  |  |  |
| 52.0Hz ± 0.01Hz  | 52.00                                                       | -4824.70                        | -4800                                                        | -24.70                                                           | ± 480                  | 0.2s                                             | 0.4s                                  |  |  |  |
| 51.15Hz ± 0.01Hz | 51.15                                                       | -4826.15                        | -4800                                                        | -26.15                                                           | ± 480                  | 0.2s                                             | 0.4s                                  |  |  |  |
| 50.70Hz ± 0.01Hz | 50.70                                                       | -4834.10                        | -4800                                                        | -34.10                                                           | ± 480                  | 0.2s                                             | 0.2s                                  |  |  |  |
| 50.2Hz ± 0.01Hz  | 50.20                                                       | -2414.00                        | -2400                                                        |                                                                  |                        | 0.2s                                             | 0.6s                                  |  |  |  |
| 50Hz ± 0.01Hz    | 50.00                                                       | -2407.80                        | -2400                                                        |                                                                  |                        |                                                  |                                       |  |  |  |




| 4.6.1 Table:     | Power res | sponse to ov                                              | er frequency                                                 |                                                                  |                        |                                                  | Р                                     |  |  |
|------------------|-----------|-----------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------|------------------------|--------------------------------------------------|---------------------------------------|--|--|
| Charging mode    |           |                                                           |                                                              |                                                                  |                        |                                                  |                                       |  |  |
|                  |           | 0% Pn, f1 =52.0Hz; droop=5%; f-stop deactivated, no delay |                                                              |                                                                  |                        |                                                  |                                       |  |  |
| Test 3           | f (Hz)    | Measured<br>output<br>Power (W)                           | Calculated<br>from standard<br>characteristic<br>curve P (W) | Tolerance<br>between<br>measured<br>P and<br>calculated<br>P (W) | Tolerance<br>Limit (W) | For a reduction of active power of 50% Pmax T≤2s | For a reduction of active power T≤20s |  |  |
| 50Hz ± 0.01Hz    | 50.00     | -77.94                                                    |                                                              |                                                                  |                        |                                                  |                                       |  |  |
| 51.0Hz ± 0.01Hz  | 51.00     | -78.50                                                    | 0                                                            | -78.50                                                           | ± 480                  |                                                  |                                       |  |  |
| 51.70Hz ± 0.01Hz | 51.70     | -79.02                                                    | 0                                                            | -79.02                                                           | ± 480                  |                                                  |                                       |  |  |
| 52.0Hz ± 0.01Hz  | 52.00     | -78.45                                                    | 0                                                            | -78.45                                                           | ± 480                  |                                                  |                                       |  |  |
| 51.70Hz ± 0.01Hz | 51.70     | -77.70                                                    | 0                                                            | -77.70                                                           | ± 480                  |                                                  |                                       |  |  |
| 51.00Hz ± 0.01Hz | 51.00     | -78.17                                                    | 0                                                            | -78.17                                                           | ± 480                  |                                                  |                                       |  |  |
| 50Hz ± 0.01Hz    | 50.00     | -75.70                                                    |                                                              |                                                                  |                        |                                                  |                                       |  |  |
|                  | 0% P      | n, f1 =50.2Hz                                             | z; droop=5%; f-s                                             | stop =50.1, n                                                    | o delay, Dea           | ctivation time                                   | tstop 30s                             |  |  |
| Test 4           | f (Hz)    | Measured<br>output<br>Power (W)                           | Calculated<br>from standard<br>characteristic<br>curve P (W) | Tolerance<br>between<br>measured<br>P and<br>calculated<br>P (W) | Tolerance<br>Limit (W) | For a reduction of active power of 50% Pmax T≤2s | For a reduction of active power T≤20s |  |  |
| 50Hz ± 0.01Hz    | 50.00     | -7.69                                                     | 0                                                            |                                                                  |                        |                                                  |                                       |  |  |
| 50.2Hz ± 0.01Hz  | 50.20     | -7.73                                                     | 0                                                            |                                                                  |                        |                                                  |                                       |  |  |
| 50.70Hz ± 0.01Hz | 50.70     | -980.43                                                   | -960                                                         | -20.43                                                           | ± 480                  | 0.4s                                             | 0.8s                                  |  |  |
| 51.15Hz ± 0.01Hz | 51.15     | -1858.50                                                  | -1824                                                        | -34.50                                                           | ± 480                  | 0.2s                                             | 0.4s                                  |  |  |
| 52.0Hz ± 0.01Hz  | 52.00     | -3476.68                                                  | -3456                                                        | -20.68                                                           | ± 480                  | 0.2s                                             | 0.6s                                  |  |  |
| 51.15Hz ± 0.01Hz | 51.15     | -3488.90                                                  | -3456                                                        | -32.90                                                           | ± 480                  |                                                  |                                       |  |  |
| 50.70Hz ± 0.01Hz | 50.70     | -3490.45                                                  | -3456                                                        | -34.45                                                           | ± 480                  |                                                  |                                       |  |  |
| 50.2Hz ± 0.01Hz  | 50.20     | -3491.25                                                  | -3456                                                        |                                                                  |                        |                                                  |                                       |  |  |
| 50Hz ± 0.01Hz    | 50.00     | -7.68                                                     | 0                                                            |                                                                  |                        |                                                  |                                       |  |  |





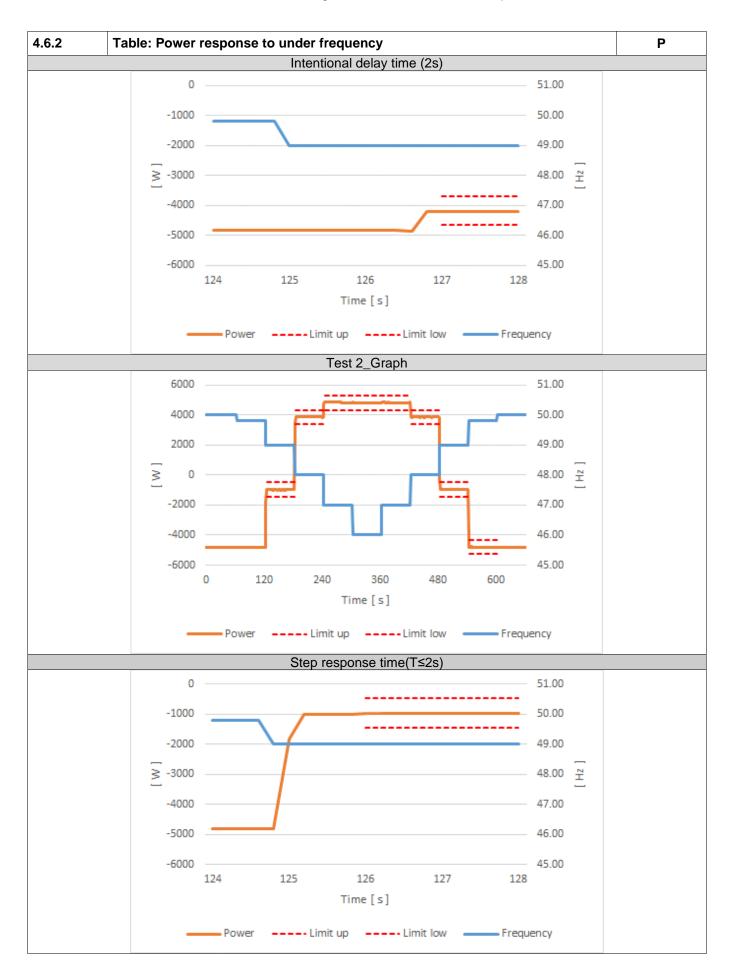




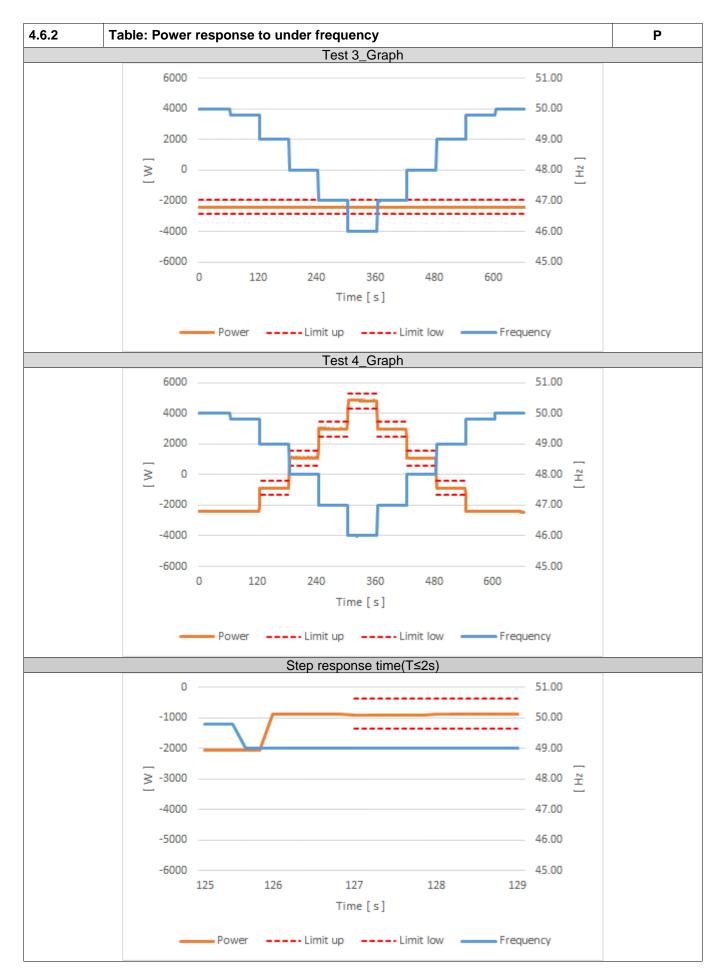







| 4.6.2 Tabl      | le: Power re | sponse to un                                       | der frequency                                                |                                                                  |                        |                                                  | Р                                     |  |  |  |
|-----------------|--------------|----------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------|------------------------|--------------------------------------------------|---------------------------------------|--|--|--|
|                 |              | -100% Pn, f1 =49.8Hz; droop=12%; with delay of 2 s |                                                              |                                                                  |                        |                                                  |                                       |  |  |  |
| Test 1          | f (Hz)       | Measured<br>output<br>Power (W)                    | Calculated<br>from standard<br>characteristic<br>curve P (W) | Tolerance<br>between<br>measured<br>P and<br>calculated<br>P (W) | Tolerance<br>Limit (W) | For a reduction of active power of 50% Pmax T≤2s | For a reduction of active power T≤20s |  |  |  |
| 50Hz ± 0.01Hz   | 50.00        | -4831.80                                           |                                                              |                                                                  |                        |                                                  |                                       |  |  |  |
| 49.8Hz ± 0.01Hz | 49.80        | -4831.25                                           | -4800.00                                                     | -31.25                                                           | ± 480                  |                                                  |                                       |  |  |  |
| 49.0Hz ± 0.01z  | 49.00        | -4238.60                                           | -4160.00                                                     | -78.60                                                           | ± 480                  | 1.6s                                             | 1.8s                                  |  |  |  |
| 48.0Hz ± 0.01z  | 48.00        | -3436.55                                           | -3360.00                                                     | -76.55                                                           | ± 480                  | 0.4s                                             | 0.4s                                  |  |  |  |
| 47.0Hz ± 0.01z  | 47.00        | -2656.02                                           | -2560.00                                                     | -96.02                                                           | ± 480                  | 0.4s                                             | 0.6s                                  |  |  |  |
| 46.0Hz ± 0.01z  | 46.00        | -1912.27                                           | -1760.00                                                     | -152.27                                                          | ± 480                  | 0.4s                                             | 0.6s                                  |  |  |  |
| 47.0Hz ± 0.01z  | 47.00        | -2645.27                                           | -2560.00                                                     | -85.27                                                           | ± 480                  | 0.4s                                             | 0.6s                                  |  |  |  |
| 48.0Hz ± 0.01z  | 48.00        | -3436.25                                           | -3360.00                                                     | -76.25                                                           | ± 480                  | 0.4s                                             | 0.6s                                  |  |  |  |
| 49.0Hz ± 0.01z  | 49.00        | -4216.42                                           | -4160.00                                                     | -56.42                                                           | ± 480                  | 0.2s                                             | 0.4s                                  |  |  |  |
| 49.8Hz ± 0.01Hz | 49.80        | -4837.38                                           | -4800.00                                                     | -37.38                                                           | ± 480                  | 0.4s                                             | 0.6s                                  |  |  |  |
| 50.0Hz ± 0.01Hz | 50.00        | -4843.83                                           |                                                              |                                                                  |                        |                                                  |                                       |  |  |  |
|                 |              | -100% Pn, f1 =49.8Hz; droop=2%; no delay           |                                                              |                                                                  |                        |                                                  |                                       |  |  |  |
| Test 2          | f (Hz)       | Measured<br>output<br>Power (W)                    | Calculated<br>from standard<br>characteristic<br>curve P (W) | Tolerance between measured P and calculated P (W)                | Tolerance<br>Limit (W) | For a reduction of active power of 50% Pmax T≤2s | For a reduction of active power T≤20s |  |  |  |
| 50Hz ± 0.01Hz   | 50.00        | -4844.86                                           |                                                              |                                                                  |                        |                                                  |                                       |  |  |  |
| 49.8Hz ± 0.01Hz | 49.80        | -4811.42                                           | -4800.00                                                     | -11.42                                                           | ± 480                  |                                                  |                                       |  |  |  |
| 49.0Hz ± 0.01Hz | 49.00        | -1008.05                                           | -960.00                                                      | -48.05                                                           | ± 480                  | 0.4s                                             | 0.6s                                  |  |  |  |
| 48.0Hz ± 0.01Hz |              | 3843.43                                            | 3840.00                                                      | 3.43                                                             | ± 480                  | 0.6s                                             | 0.8s                                  |  |  |  |
| 47.0Hz ± 0.01Hz | 47.00        | 4823.47                                            | 4800.00                                                      | 23.47                                                            | ± 480                  | 0.2s                                             | 0.4s                                  |  |  |  |
| 46.0Hz ± 0.01Hz |              | 4810.62                                            | 4800.00                                                      | 10.62                                                            | ± 480                  |                                                  |                                       |  |  |  |
| 47.0Hz ± 0.01Hz | 47.00        | 4818.23                                            | 4800.00                                                      | 18.23                                                            | ± 480                  |                                                  |                                       |  |  |  |
| 48.0Hz ± 0.01Hz | 48.00        | 3861.55                                            | 3840.00                                                      | 21.55                                                            | ± 480                  | 0.2s                                             | 0.4s                                  |  |  |  |
| 49.0Hz ± 0.01Hz | 49.00        | -968.88                                            | -960.00                                                      | -8.88                                                            | ± 480                  | 0.4s                                             | 0.6s                                  |  |  |  |
| 49.8Hz ± 0.01Hz | 49.80        | -4799.95                                           | -4800.00                                                     | 0.05                                                             | ± 480                  | 0.4s                                             | 0.8s                                  |  |  |  |
| 50.0Hz ± 0.01Hz | 50.00        | -4834.87                                           |                                                              |                                                                  |                        |                                                  |                                       |  |  |  |



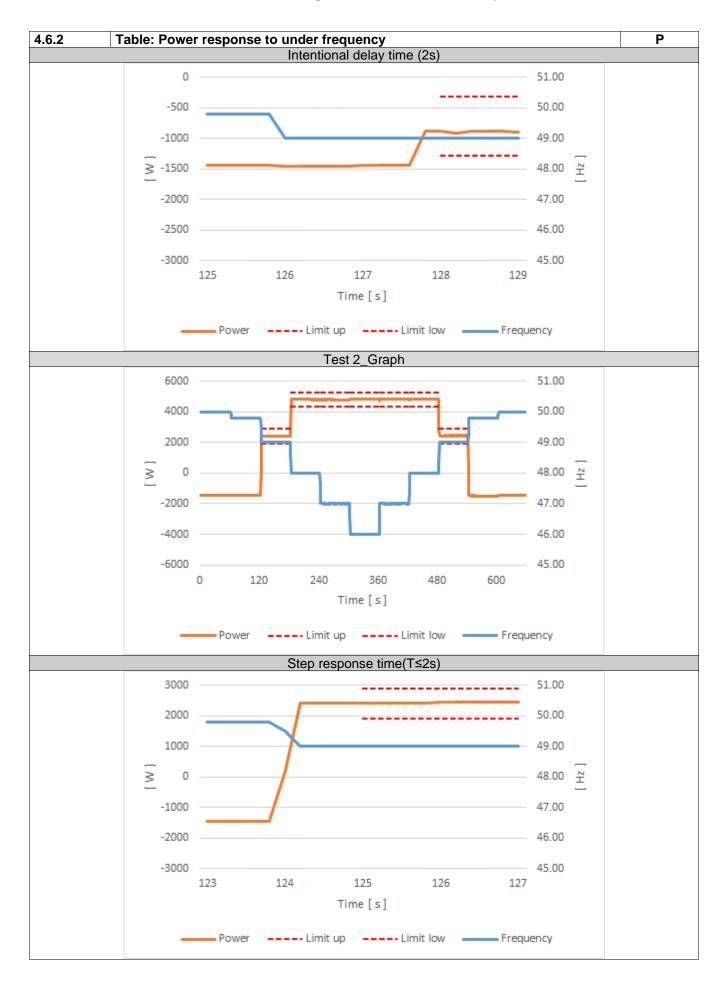

| 4.6.2 Table:    | Power re | esponse to u                    | nder frequency                                               | 1                                                          |                        |                                                  | Р                                     |
|-----------------|----------|---------------------------------|--------------------------------------------------------------|------------------------------------------------------------|------------------------|--------------------------------------------------|---------------------------------------|
|                 |          |                                 | -50% Pn, f1                                                  | =46.0Hz; droop=5                                           | 5%; no delay           |                                                  |                                       |
| Test 3          | f (Hz)   | Measured<br>output<br>Power (W) | Calculated<br>from standard<br>characteristic<br>curve P (W) | Tolerance<br>between<br>measured P and<br>calculated P (W) | Tolerance<br>Limit (W) | For a reduction of active power of 50% Pmax T≤2s | For a reduction of active power T≤20s |
| 50Hz ± 0.01Hz   | 50.00    | -2416.80                        |                                                              |                                                            |                        |                                                  |                                       |
| 49.0Hz ± 0.01Hz | 49.00    | -2416.18                        | -2400.00                                                     | -16.18                                                     | ± 480                  |                                                  |                                       |
| 48.0Hz ± 0.01Hz | 48.00    | -2416.68                        | -2400.00                                                     | -16.68                                                     | ± 480                  |                                                  |                                       |
| 47.0Hz ± 0.01Hz | 47.00    | -2416.37                        | -2400.00                                                     | -16.37                                                     | ± 480                  |                                                  |                                       |
| 46.0Hz ± 0.01Hz | 46.00    | -2416.28                        | -2400.00                                                     | -16.28                                                     | ± 480                  |                                                  |                                       |
| 47.0Hz ± 0.01Hz | 47.00    | -2416.77                        | -2400.00                                                     | -16.77                                                     | ± 480                  |                                                  |                                       |
| 48.0Hz ± 0.01Hz | 48.00    | -2416.42                        | -2400.00                                                     | -16.42                                                     | ± 480                  |                                                  |                                       |
| 49.0Hz ± 0.01Hz | 49.00    | -2416.78                        | -2400.00                                                     | -16.78                                                     | ± 480                  |                                                  |                                       |
| 50.0Hz ± 0.01Hz | 50.00    | -2417.05                        |                                                              |                                                            |                        |                                                  |                                       |
|                 |          |                                 | -50% P                                                       | n, f1 =49.8Hz; dro                                         | op=5%;                 |                                                  |                                       |
| Test 4          | f (Hz)   | Measured<br>output<br>Power (W) | Calculated<br>from standard<br>characteristic<br>curve P (W) | Tolerance<br>between<br>measured P and<br>calculated P (W) | Tolerance<br>Limit (W) | For a reduction of active power of 50% Pmax T≤2s | For a reduction of active power T≤20s |
| 50Hz ± 0.01Hz   | 50.00    | -2416.18                        |                                                              |                                                            |                        |                                                  |                                       |
| 49.8Hz ± 0.01Hz | 49.80    | -2397.80                        | -2400.00                                                     | 2.20                                                       | ± 480                  |                                                  |                                       |
| 49.0Hz ± 0.01Hz | 49.00    | -881.30                         | -864.00                                                      | -17.30                                                     | ± 480                  | 0.2s                                             | 0.4s                                  |
| 48.0Hz ± 0.01Hz | 48.00    | 1099.08                         | 1056.00                                                      | 43.08                                                      | ± 480                  | 0.8s                                             | 1.0s                                  |
| 47.0Hz ± 0.01Hz | 47.00    | 2994.78                         | 2976.00                                                      | 18.78                                                      | ± 480                  | 0.2s                                             | 0.6s                                  |
| 46.0Hz ± 0.01Hz | 46.00    | 4807.50                         | 4800.00                                                      | 7.50                                                       | ± 480                  | 0.4s                                             | 0.6s                                  |
| 47.0Hz ± 0.01Hz | 47.00    | 2954.23                         | 2976.00                                                      | -21.77                                                     | ± 480                  | 0.2s                                             | 0.4s                                  |
| 48.0Hz ± 0.01Hz | 48.00    | 1055.85                         | 1056.00                                                      | -0.15                                                      | ± 480                  | 0.2s                                             | 0.6s                                  |
| 49.0Hz ± 0.01Hz | 49.00    | -917.68                         | -864.00                                                      | -53.68                                                     | ± 480                  | 0.6s                                             | 0.8s                                  |
| 49.8Hz ± 0.01Hz | 49.80    | -2415.70                        | -2400.00                                                     | -15.70                                                     | ± 480                  |                                                  |                                       |
| 50.0Hz ± 0.01Hz | 50.00    | -2432.50                        |                                                              |                                                            |                        |                                                  |                                       |
|                 |          |                                 | Test 1_0                                                     | Graph                                                      |                        |                                                  |                                       |
|                 | 6000     |                                 |                                                              |                                                            | 51.0                   | 00                                               |                                       |
|                 | 4000     |                                 |                                                              |                                                            | 50.0                   | 00                                               |                                       |
|                 | 2000     |                                 |                                                              |                                                            | 49.0                   | 00                                               |                                       |
|                 | _ 0      |                                 | <u> </u>                                                     |                                                            | 48.0                   | 00 포                                             |                                       |
|                 | -2000    |                                 |                                                              |                                                            | 47.0                   |                                                  |                                       |
|                 | -4000    |                                 |                                                              |                                                            | 46.0                   |                                                  |                                       |
|                 | -6000    | 0 120                           | 240 3                                                        | 60 480                                                     | 600 45.0               | JU .                                             |                                       |
|                 |          |                                 | Time [                                                       | s]                                                         |                        |                                                  |                                       |
|                 |          | Power -                         | Limit up                                                     | Limit low —                                                | Frequency              |                                                  |                                       |



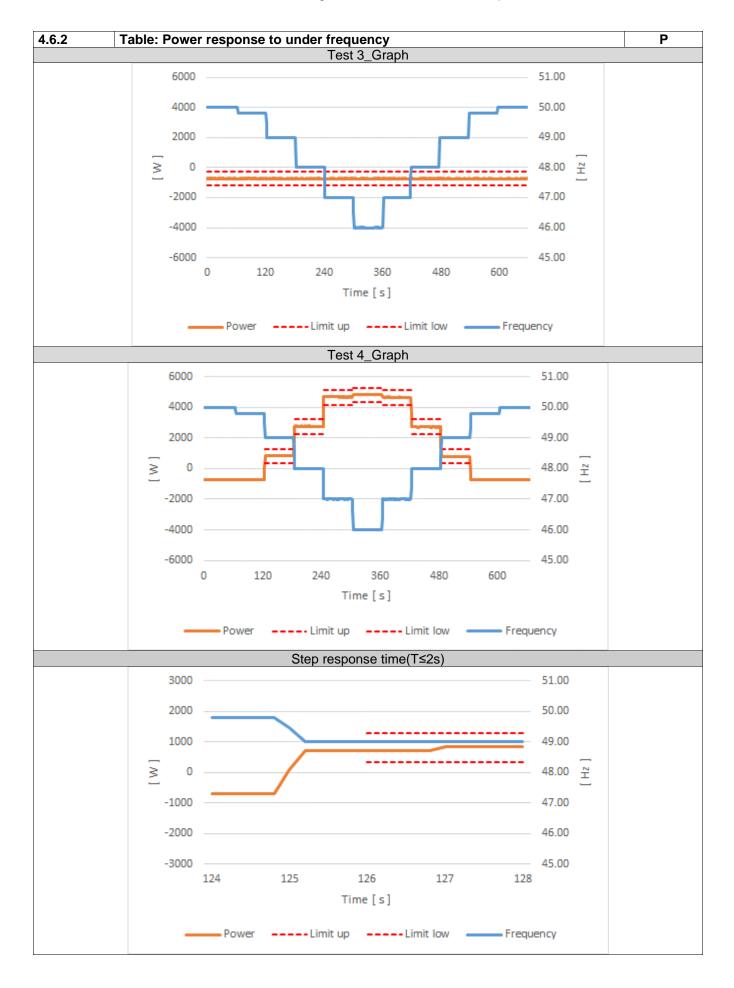




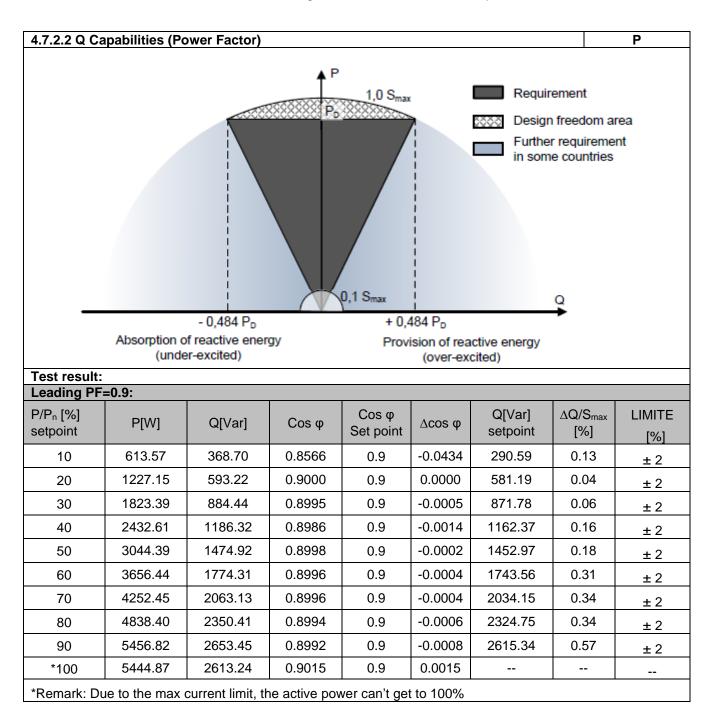





| 4.6.2 Table:    | Power r                                 | esponse to                                        | under frequenc                                               | ;y                                                               |                        |                                                  | Р                                     |  |  |  |  |
|-----------------|-----------------------------------------|---------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------|------------------------|--------------------------------------------------|---------------------------------------|--|--|--|--|
|                 |                                         | -30% Pn, f1 =49.8Hz; droop=12%; with delay of 2 s |                                                              |                                                                  |                        |                                                  |                                       |  |  |  |  |
| Test 5          | f (Hz)                                  | Measured<br>output<br>Power (W)                   | Calculated<br>from standard<br>characteristic<br>curve P (W) | Tolerance<br>between<br>measured P<br>and<br>calculated P<br>(W) | Tolerance<br>Limit (W) | For a reduction of active power of 50% Pmax T≤2s | For a reduction of active power T≤20s |  |  |  |  |
| 50Hz ± 0.01Hz   | 50.00                                   | -1456.46                                          |                                                              |                                                                  |                        |                                                  |                                       |  |  |  |  |
| 49.8Hz ± 0.01Hz | 49.80                                   | -1446.42                                          | -1440.00                                                     | -6.42                                                            | ± 480                  |                                                  |                                       |  |  |  |  |
| 49.0Hz ± 0.01z  | 49.00                                   | -905.17                                           | -800.00                                                      | -105.17                                                          | ± 480                  | 1.4s                                             | 1.6s                                  |  |  |  |  |
| 48.0Hz ± 0.01z  | 48.00                                   | -9.90                                             | 0.00                                                         | -9.90                                                            | ± 480                  | 0.6s                                             | 0.8s                                  |  |  |  |  |
| 47.0Hz ± 0.01z  | 47.00                                   | 828.00                                            | 800.00                                                       | 28.00                                                            | ± 480                  | 0.4s                                             | 0.6s                                  |  |  |  |  |
| 46.0Hz ± 0.01z  | 46.00                                   | 1631.87                                           | 1600.00                                                      | 31.87                                                            | ± 480                  | 0.6s                                             | 0.8s                                  |  |  |  |  |
| 47.0Hz ± 0.01z  | 47.00                                   | 837.42                                            | 800.00                                                       | 37.42                                                            | ± 480                  | 0.4s                                             | 0.6s                                  |  |  |  |  |
| 48.0Hz ± 0.01z  | 48.00                                   | -9.97                                             | 0.00                                                         | -9.97                                                            | ± 480                  | 0.4s                                             | 0.6s                                  |  |  |  |  |
| 49.0Hz ± 0.01z  | 49.00                                   | -880.95                                           | -800.00                                                      | -80.95                                                           | ± 480                  | 0.6s                                             | 0.8s                                  |  |  |  |  |
| 49.8Hz ± 0.01Hz | 49.80                                   | -1431.80                                          | -1440.00                                                     | 8.20                                                             | ± 480                  | 0.4s                                             | 0.6s                                  |  |  |  |  |
| 50.0Hz ± 0.01Hz | 50.00                                   | -1432.10                                          |                                                              |                                                                  |                        |                                                  |                                       |  |  |  |  |
|                 | -30% Pn, f1 =49.8Hz; droop=2%; no delay |                                                   |                                                              |                                                                  |                        |                                                  |                                       |  |  |  |  |
| Test 6          | f (Hz)                                  | Measured<br>output<br>Power (W)                   | Calculated<br>from standard<br>characteristic<br>curve P (W) | Tolerance between measured P and calculated P (W)                | Tolerance<br>Limit (W) | For a reduction of active power of 50% Pmax T≤2s | For a reduction of active power T≤20s |  |  |  |  |
| 50Hz ± 0.01Hz   | 50.00                                   | -1443.33                                          |                                                              |                                                                  |                        |                                                  |                                       |  |  |  |  |
| 49.8Hz ± 0.01Hz | 49.80                                   | -1455.88                                          | -1440.00                                                     | -15.88                                                           | ± 480                  |                                                  |                                       |  |  |  |  |
| 49.0Hz ± 0.01Hz | 49.00                                   | 2415.56                                           | 2400.00                                                      | 15.56                                                            | ± 480                  | 0.2s                                             | 0.6s                                  |  |  |  |  |
| 48.0Hz ± 0.01Hz | 48.00                                   | 4815.39                                           | 4800.00                                                      | 15.39                                                            | ± 480                  | 0.4s                                             | 0.6s                                  |  |  |  |  |
| 47.0Hz ± 0.01Hz | 47.00                                   | 4795.22                                           | 4800.00                                                      | -4.78                                                            | ± 480                  |                                                  |                                       |  |  |  |  |
| 46.0Hz ± 0.01Hz | 46.00                                   | 4818.86                                           | 4800.00                                                      | 18.86                                                            | ± 480                  |                                                  |                                       |  |  |  |  |
| 47.0Hz ± 0.01Hz | 47.00                                   | 4816.92                                           | 4800.00                                                      | 16.92                                                            | ± 480                  |                                                  |                                       |  |  |  |  |
| 48.0Hz ± 0.01Hz | 48.00                                   | 4816.75                                           | 4800.00                                                      | 16.75                                                            | ± 480                  |                                                  |                                       |  |  |  |  |
| 49.0Hz ± 0.01Hz | 49.00                                   | 2449.34                                           | 2400.00                                                      | 49.34                                                            | ± 480                  | 0.4s                                             | 0.6s                                  |  |  |  |  |
| 49.8Hz ± 0.01Hz | 49.80                                   | -1483.08                                          | -1440.00                                                     | -43.08                                                           | ± 480                  | 0.4s                                             | 0.6s                                  |  |  |  |  |
| 50.0Hz ± 0.01Hz | 50.00                                   | -1469.23                                          |                                                              |                                                                  |                        |                                                  |                                       |  |  |  |  |




| 4.6.2 Ta      | able: | Power res    | ponse to un                     | der frequency                                                   |                                                                  |                        |                                                  | Р                                     |
|---------------|-------|--------------|---------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|------------------------|--------------------------------------------------|---------------------------------------|
|               |       |              |                                 | -15% Pn, f1 =4                                                  | 6.0Hz; droop                                                     | =5%; no dela           | ay                                               |                                       |
| Test 7        |       | f (Hz)       | Measured<br>output<br>Power (W) | Calculated<br>from<br>standard<br>characteristic<br>curve P (W) | Tolerance<br>between<br>measured<br>P and<br>calculated<br>P (W) | Tolerance<br>Limit (W) | For a reduction of active power of 50% Pmax      | For a reduction of active power T≤20s |
| 50Hz ± 0.01Hz | z     | 50.00        | -730.59                         |                                                                 |                                                                  |                        |                                                  |                                       |
| 49.0Hz ± 0.01 |       | 49.00        | -732.68                         | -720.00                                                         | -12.68                                                           | ± 480                  |                                                  |                                       |
| 48.0Hz ± 0.01 |       | 48.00        | -731.88                         | -720.00                                                         | -11.88                                                           | ± 480                  |                                                  |                                       |
| 47.0Hz ± 0.01 | Hz    | 47.00        | -731.91                         | -720.00                                                         | -11.91                                                           | ± 480                  |                                                  |                                       |
| 46.0Hz ± 0.01 | Hz    | 46.00        | -732.39                         | -720.00                                                         | -12.39                                                           | ± 480                  |                                                  |                                       |
| 47.0Hz ± 0.01 | Hz    | 47.00        | -732.80                         | -720.00                                                         | -12.80                                                           | ± 480                  |                                                  |                                       |
| 48.0Hz ± 0.01 |       | 48.00        | -732.05                         | -720.00                                                         | -12.05                                                           | ± 480                  |                                                  |                                       |
| 49.0Hz ± 0.01 |       | 49.00        | -733.32                         | -720.00                                                         | -13.32                                                           | ± 480                  |                                                  |                                       |
| 50.0Hz ± 0.01 |       | 50.00        | -733.54                         |                                                                 |                                                                  |                        |                                                  |                                       |
|               |       |              |                                 | -15% Pn,                                                        | f1 =49.8Hz; d                                                    | lroop=5%;              |                                                  |                                       |
| Test 8        |       | f (Hz)       | Measured<br>output<br>Power (W) | Calculated<br>from<br>standard<br>characteristic<br>curve P (W) | Tolerance<br>between<br>measured<br>P and<br>calculated<br>P (W) | Tolerance<br>Limit (W) | For a reduction of active power of 50% Pmax T≤2s | For a reduction of active power T≤20s |
| 50Hz ± 0.01Hz | z     | 50.00        | -722.09                         |                                                                 |                                                                  |                        |                                                  |                                       |
| 49.8Hz ± 0.01 |       | 49.80        | -710.73                         | -720.00                                                         | 9.27                                                             | ± 480                  |                                                  |                                       |
| 49.0Hz ± 0.01 |       | 49.00        | 843.90                          | 816.00                                                          | 27.90                                                            | ± 480                  | 0.2s                                             | 0.8s                                  |
| 48.0Hz ± 0.01 |       | 48.00        | 2759.73                         | 2736.00                                                         | 23.73                                                            | ± 480                  | 0.4s                                             | 1.4s                                  |
| 47.0Hz ± 0.01 |       | 47.00        | 4679.92                         | 4656.00                                                         | 23.92                                                            | ± 480                  | 0.4s                                             | 1.4s                                  |
| 46.0Hz ± 0.01 | Hz    | 46.00        | 4830.07                         | 4800.00                                                         | 30.07                                                            | ± 480                  | 0.8s                                             | 1.0s                                  |
| 47.0Hz ± 0.01 | Hz    | 47.00        | 4659.31                         | 4656.00                                                         | 3.31                                                             | ± 480                  | 0.6s                                             | 0.8s                                  |
| 48.0Hz ± 0.01 |       | 48.00        | 2721.68                         | 2736.00                                                         | -14.32                                                           | ± 480                  | 0.6s                                             | 0.8s                                  |
| 49.0Hz ± 0.01 | Hz    | 49.00        | 803.29                          | 816.00                                                          | -12.71                                                           | ± 480                  | 0.4s                                             | 0.6s                                  |
| 49.8Hz ± 0.01 | Hz    | 49.80        | -732.28                         | -720.00                                                         | -12.28                                                           | ± 480                  | 0.6s                                             | 0.8s                                  |
| 50.0Hz ± 0.01 | Hz    | 50.00        | -718.48                         |                                                                 |                                                                  |                        |                                                  |                                       |
|               |       |              |                                 | Test 1_Gra                                                      | aph                                                              |                        |                                                  |                                       |
|               |       | 6000         |                                 |                                                                 |                                                                  |                        | 51.00                                            |                                       |
|               |       | 4000 —       |                                 |                                                                 |                                                                  |                        | 50.00                                            |                                       |
|               | [ ×   | 0            |                                 |                                                                 |                                                                  |                        | 48.00 끝                                          |                                       |
|               |       | -2000        |                                 | - Б                                                             |                                                                  |                        | 47.00                                            |                                       |
|               |       | -4000 —      |                                 |                                                                 |                                                                  |                        | 46.00                                            |                                       |
|               |       | -6000 —<br>0 | 120                             | 240 360                                                         | 480                                                              | 600                    | 45.00                                            |                                       |
|               |       |              |                                 | Time [s]                                                        |                                                                  |                        |                                                  |                                       |
|               |       |              | Power                           | -Limit up                                                       | Limit low                                                        |                        | ncy                                              |                                       |







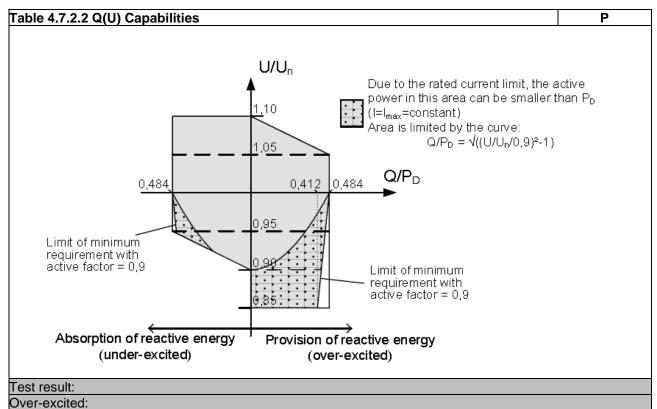











|                               | Capabilitie | s (Power F | actor)     |                   |         |                    |                                 | Р             |
|-------------------------------|-------------|------------|------------|-------------------|---------|--------------------|---------------------------------|---------------|
| Lagging P                     | F=-0.9:     |            |            |                   |         |                    |                                 |               |
| P/Pn [%]<br>setpoint          | P[W]        | Q[Var]     | Cosφ       | Cosφ<br>Set point | Δcosφ   | Q[Var]<br>setpoint | $\Delta$ Q/S <sub>max</sub> [%] | LIMITE<br>[%] |
| 10                            | 615.85      | -370.49    | 0.8563     | 0.9               | -0.0437 | -290.59            | -0.13                           | ± 2           |
| 20                            | 1181.75     | -574.85    | 0.8989     | 0.9               | -0.0011 | -581.19            | 0.02                            | ± 2           |
| 30                            | 1824.82     | -867.72    | 0.9029     | 0.9               | 0.0029  | -871.78            | 0.02                            | ± 2           |
| 40                            | 2433.74     | -1166.18   | 0.9017     | 0.9               | 0.0017  | -1162.37           | -0.03                           | ± 2           |
| 50                            | 3041.34     | -1454.33   | 0.9020     | 0.9               | 0.0020  | -1452.97           | -0.01                           | ± 2           |
| 60                            | 3654.29     | -1751.56   | 0.9017     | 0.9               | 0.0017  | -1743.56           | -0.08                           | ± 2           |
| 70                            | 4246.50     | -2039.60   | 0.9013     | 0.9               | 0.0013  | -2034.15           | -0.06                           | ± 2           |
| 80                            | 4838.33     | -2325.79   | 0.9012     | 0.9               | 0.0012  | -2324.75           | -0.01                           | ± 2           |
| 90                            | 5452.88     | -2624.89   | 0.9010     | 0.9               | 0.0010  | -2615.34           | -0.14                           | ± 2           |
| 100                           | 5433.85     | -2611.12   | 0.9013     | 0.9               | 0.0013  |                    |                                 |               |
| Q=0:                          |             |            |            |                   |         |                    |                                 |               |
| P/P <sub>n</sub> [%] setpoint | P[W]        | Q[Var]     | Cosφ       | Cosφ<br>Set point | Δcosφ   | Q[Var]<br>setpoint | $\Delta$ Q/S <sub>max</sub> [%] | LIMITE<br>[%] |
| 10                            | 616.55      | 67.29      | 0.9939     | 1.0               | -0.0061 | 0.00               | 0.11                            | ± 2           |
| 20                            | 1208.93     | 55.07      | 0.9989     | 1.0               | -0.0011 | 0.00               | 0.18                            | ± 2           |
| 30                            | 1832.52     | 57.13      | 0.9995     | 1.0               | -0.0005 | 0.00               | 0.29                            | ± 2           |
| 40                            | 2446.71     | 66.94      | 0.9996     | 1.0               | -0.0004 | 0.00               | 0.45                            | ± 2           |
| 50                            | 3060.10     | 29.57      | 0.9997     | 1.0               | -0.0003 | 0.00               | 0.25                            | ± 2           |
| 60                            | 3673.63     | 31.05      | 0.9998     | 1.0               | -0.0002 | 0.00               | 0.31                            | ± 2           |
| 70                            | 4273.98     | -59.16     | 0.9999     | 1.0               | -0.0001 | 0.00               | -0.69                           | ± 2           |
| 80                            | 4864.60     | -67.90     | 0.9999     | 1.0               | -0.0001 | 0.00               | -0.91                           | ± 2           |
| 90                            | 5483.36     | -76.78     | 0.9999     | 1.0               | -0.0001 | 0.00               | -1.15                           | ± 2           |
| 100                           | 6059.64     | -84.92     | 0.9999     | 1.0               | -0.0001 | 0.00               | -1.42                           | ± 2           |
|                               |             |            |            | Graph             |         |                    |                                 |               |
|                               | 120         | 0.00%      |            |                   |         |                    |                                 |               |
|                               | 120         | 7.00%      |            |                   |         |                    |                                 |               |
|                               | 100         | 0.00%      |            | 1                 |         |                    |                                 |               |
|                               | 0.0         | 0.00%      |            | I                 |         | _                  |                                 |               |
|                               |             | ).00%      |            | Į.                |         | <b>9</b> /         |                                 |               |
|                               | 8 J 60      | 0.00%      |            | <b>—</b>          |         |                    |                                 |               |
|                               |             | 000%       |            | <b>√</b> 1        |         |                    |                                 |               |
|                               | 40          | 0.00%      |            |                   |         |                    |                                 |               |
|                               | 20          | 0.00%      |            |                   |         |                    |                                 |               |
|                               |             | 0.00%      |            | <u> </u>          | •       |                    |                                 |               |
|                               |             |            | -40.00% -2 | 0.00% 0.00        |         | 40.00%             | 60.00%                          |               |
|                               |             |            |            | Q/Smax            | ×[%]    |                    |                                 |               |
|                               |             |            |            |                   |         |                    |                                 |               |



|                      | pabilities (Powe   | er Factor)           |                  |                      |                        | Р          |
|----------------------|--------------------|----------------------|------------------|----------------------|------------------------|------------|
| Q=43.58%P            | n                  | 1                    |                  |                      |                        |            |
| P/Pn [%]<br>setpoint | P[W]               | Q[Var]               | Cosφ             | Q[Var]<br>setpoint   | $\Delta Q/S_{max}$ [%] | LIMITE [%] |
| 10                   | 621.05             | 2610.17              | 0.2314           | 2614.80              | -0.08                  | ± 2        |
| 20                   | 1219.64            | 2604.23              | 0.4240           | 2614.80              | -0.18                  | ± 2        |
| 30                   | 1816.10            | 2602.52              | 0.5721           | 2614.80              | -0.20                  | ± 2        |
| 40                   | 2413.55            | 2595.52              | 0.6808           | 2614.80              | -0.32                  | ± 2        |
| 50                   | 3016.30            | 2601.26              | 0.7572           | 2614.80              | -0.23                  | ± 2        |
| 60                   | 3612.44            | 2622.89              | 0.8091           | 2614.80              | 0.13                   | ± 2        |
| 70                   | 4210.93            | 2609.79              | 0.8499           | 2614.80              | -0.08                  | ± 2        |
| 80                   | 4817.69            | 2623.26              | 0.8782           | 2614.80              | 0.14                   | ± 2        |
| 90                   | 5418.86            | 2609.98              | 0.9009           | 2614.80              | -0.08                  | ± 2        |
| 100                  | 5419.06            | 2609.95              | 0.9009           | 2614.80              | -0.08                  | ± 2        |
| Q=-43.58%P           | 'n                 |                      |                  |                      |                        |            |
| P/Pn [%]<br>setpoint | P[W]               | Q[Var]               | Cosφ             | Q[Var]<br>setpoint   | $\Delta Q/S_{max}$ [%] | LIMITE [%  |
| 10                   | 626.69             | -2571.65             | 0.2366           | -2614.80             | 0.72                   | ± 2        |
| 20                   | 1209.51            | -2590.00             | 0.4225           | -2614.80             | 0.41                   | ± 2        |
| 30                   | 1809.92            | -2600.82             | 0.5703           | -2614.80             | 0.23                   | ± 2        |
| 40                   | 2405.08            | -2617.86             | 0.6766           | -2614.80             | -0.05                  | ± 2        |
| 50                   | 3010.28            | -2635.63             | 0.7528           | -2614.80             | -0.35                  | ± 2        |
| 60                   | 3614.62            | -2650.00             | 0.8068           | -2614.80             | -0.59                  | ± 2        |
| 70                   | 4210.00            | -2660.00             | 0.8453           | -2614.80             | -0.75                  | ± 2        |
|                      | 1000 01            | -2643.07             | 0.8760           | -2614.80             | -0.47                  | ± 2        |
| 80                   | 4800.04            | 20.0.0.              |                  |                      |                        |            |
| 80<br>90             | 4800.04<br>5400.53 | -2640.00             | 0.8987           | -2614.80             | -0.42                  | ± 2        |
|                      |                    |                      | 0.8987<br>0.9007 | -2614.80<br>-2614.80 | -0.42<br>0.08          | ± 2        |
| 90<br>100*           | 5400.53            | -2640.00<br>-2610.00 | 0.9007           | -2614.80             |                        |            |





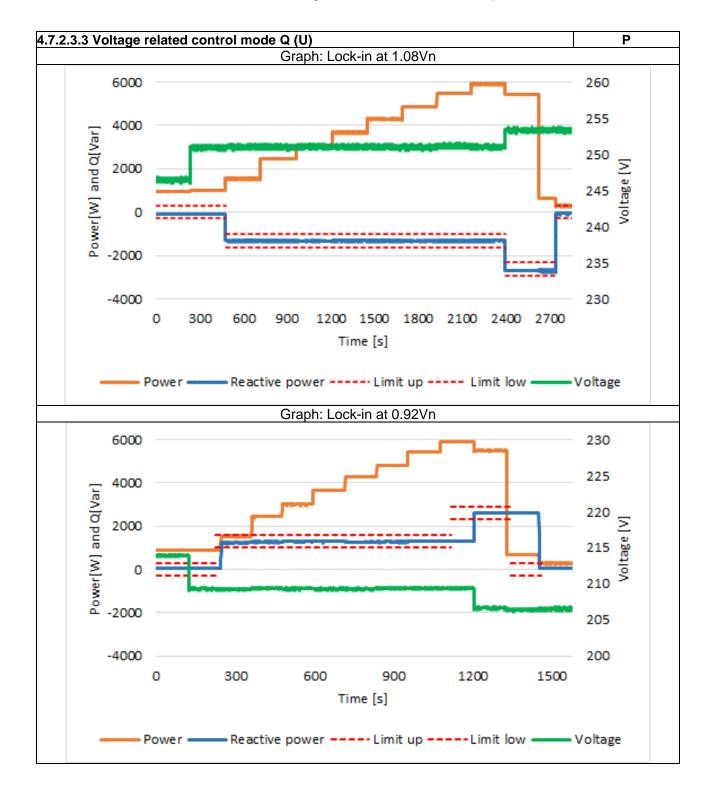


| O FOI OMOROGI             |                |                                                   |         |                         |                              |            |  |
|---------------------------|----------------|---------------------------------------------------|---------|-------------------------|------------------------------|------------|--|
|                           | AC o           | utput                                             |         | Reactive power measured |                              |            |  |
| Voltage setting<br>[V/Vn] | Voltage<br>[V] | Measured Reactive power [V/Vn] Active power [Var] |         | power                   | Value<br>[Q/P <sub>D</sub> ] | Limits     |  |
| 1.10                      | 253.33         | 1.10                                              | 6026.14 | -83.97                  | -0.0139                      | ±0.02      |  |
| 1.08                      | 248.96         | 1.08                                              | 5908.24 | 1142.96                 | 0.1935                       | 0.194±0.02 |  |
| 1.05                      | 241.93         | 1.05                                              | 5426.82 | 2608.76                 | 0.4807                       | 0.484±0.02 |  |
| 1.00                      | 230.58         | 1.00                                              | 5426.33 | 2613.06                 | 0.4816                       | 0.484±0.02 |  |
| 0.95                      | 218.96         | 0.95                                              | 5463.41 | 2631.23                 | 0.4816                       |            |  |
| 0.92                      | 211.74         | 0.92                                              | 5462.95 | 2624.34                 | 0.4804                       |            |  |
| 0.90                      | 207.44         | 0.90                                              | 5463.93 | 2637.18                 | 0.4827                       |            |  |
| 0.85                      | 195.77         | 0.85                                              | 5235.59 | 2527.39                 | 0.4827                       |            |  |

## Under-excited:

|                           | AC o                                    | utput    | Reactive power measured |                              |         |             |
|---------------------------|-----------------------------------------|----------|-------------------------|------------------------------|---------|-------------|
| \/alta======tti===        |                                         | Measured |                         | Reactive                     | Value   |             |
| Voltage setting<br>[V/Vn] | Voltage [V/Vn] Active power [Var] [Var] |          | •                       | value<br>[Q/P <sub>D</sub> ] | Limits  |             |
| 1.10                      | 253.42                                  | 1.10     | 5461.67                 | -2641.43                     | -0.4836 | -0.484±0.02 |
| 1.08                      | 248.81                                  | 1.08     | 5441.30                 | -2635.28                     | -0.4843 | -0.484±0.02 |
| 1.05                      | 241.91                                  | 1.05     | 5403.74                 | -2608.82                     | -0.4828 | -0.484±0.02 |
| 1.00                      | 230.41                                  | 1.00     | 5426.47                 | -2602.22                     | -0.4795 | -0.484±0.02 |
| 0.95                      | 218.82                                  | 0.95     | 5463.93                 | -2586.13                     | -0.4733 |             |
| 0.92                      | 210.93                                  | 0.92     | 5949.08                 | -1143.49                     | -0.1922 | -0.194±0.02 |
| 0.90                      | 207.31                                  | 0.90     | 6026.62                 | -83.93                       | -0.0139 | ±0.02       |



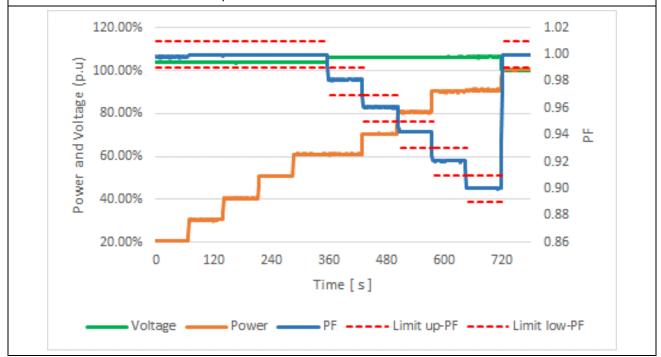

| 4.7.2.3.3 Voltage related control mode Q (U) |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |  |  |  |  |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--|--|--|--|
| Vac [V]<br>Set-point                         | P/P <sub>n</sub> [%]<br>measured                                                                                                                   | Vac[V]<br>Measured                                                                                                                                                                                                                                                                                                                                                                                                            | Q [VAr]<br>measured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Q [Var]<br>expected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Δ Q<br>[Var]<br>(≤ ± 5 %<br>Pn)                       |  |  |  |  |
| 1.07 V <sub>n</sub>                          | 15.95                                                                                                                                              | 246.51                                                                                                                                                                                                                                                                                                                                                                                                                        | -81.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ≈0 (< ± 5 % Pn)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1.35                                                 |  |  |  |  |
| 1.09 V <sub>n</sub>                          | 16.48                                                                                                                                              | 250.99                                                                                                                                                                                                                                                                                                                                                                                                                        | -82.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ≈0 (< ± 5 % Pn)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1.38                                                 |  |  |  |  |
| 1.09 Vn                                      | 25.85                                                                                                                                              | 251.06                                                                                                                                                                                                                                                                                                                                                                                                                        | -1314.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1307.40<br>(within 10sec)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.11                                                 |  |  |  |  |
| 1.09 Vn                                      | 41.07                                                                                                                                              | 251.03                                                                                                                                                                                                                                                                                                                                                                                                                        | -1322.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1307.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.25                                                 |  |  |  |  |
| 1.09 Vn                                      | 51.40                                                                                                                                              | 251.09                                                                                                                                                                                                                                                                                                                                                                                                                        | -1326.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1307.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.31                                                 |  |  |  |  |
| 1.09 Vn                                      | 61.43                                                                                                                                              | 251.07                                                                                                                                                                                                                                                                                                                                                                                                                        | -1312.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1307.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.08                                                 |  |  |  |  |
| 1.09 Vn                                      | 71.71                                                                                                                                              | 251.07                                                                                                                                                                                                                                                                                                                                                                                                                        | -1310.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1307.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.05                                                 |  |  |  |  |
| 1.09 Vn                                      | 80.73                                                                                                                                              | 251.03                                                                                                                                                                                                                                                                                                                                                                                                                        | -1327.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1307.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.34                                                 |  |  |  |  |
| 1.09 Vn                                      | 91.08                                                                                                                                              | 251.19                                                                                                                                                                                                                                                                                                                                                                                                                        | -1318.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1307.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.19                                                 |  |  |  |  |
| 1.09 Vn                                      | 98.72                                                                                                                                              | 251.05                                                                                                                                                                                                                                                                                                                                                                                                                        | -1309.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1307.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.03                                                 |  |  |  |  |
| 1.10 Vn                                      | 90.41                                                                                                                                              | 253.35                                                                                                                                                                                                                                                                                                                                                                                                                        | -2693.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -2614.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1.31                                                 |  |  |  |  |
| 1.10 Vn                                      | 10.37                                                                                                                                              | 253.39                                                                                                                                                                                                                                                                                                                                                                                                                        | -2690.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -2614.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1.26                                                 |  |  |  |  |
| 1.10 Vn                                      | 5.05                                                                                                                                               | 253.35                                                                                                                                                                                                                                                                                                                                                                                                                        | -63.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ≈0 (< ± 5 % Pn)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1.05                                                 |  |  |  |  |
|                                              | Vac [V] Set-point  1.07 Vn 1.09 Vn | Vac [V]         P/Pn [%]           Set-point         P/Pn [%]           1.07 Vn         15.95           1.09 Vn         16.48           1.09 Vn         25.85           1.09 Vn         41.07           1.09 Vn         51.40           1.09 Vn         61.43           1.09 Vn         71.71           1.09 Vn         91.08           1.09 Vn         98.72           1.10 Vn         90.41           1.10 Vn         10.37 | Vac [V]<br>Set-point         P/Pn [%]<br>measured         Vac[V]<br>Measured           1.07 Vn         15.95         246.51           1.09 Vn         16.48         250.99           1.09 Vn         25.85         251.06           1.09 Vn         41.07         251.03           1.09 Vn         51.40         251.09           1.09 Vn         61.43         251.07           1.09 Vn         71.71         251.07           1.09 Vn         80.73         251.03           1.09 Vn         91.08         251.19           1.09 Vn         98.72         251.05           1.10 Vn         90.41         253.35           1.10 Vn         10.37         253.39 | Vac [V] Set-point         P/P <sub>n</sub> [%] measured         Vac[V] Measured         Q [VAr] measured           1.07 V <sub>n</sub> 15.95         246.51         -81.17           1.09 V <sub>n</sub> 16.48         250.99         -82.66           1.09 V <sub>n</sub> 25.85         251.06         -1314.13           1.09 V <sub>n</sub> 41.07         251.03         -1322.51           1.09 V <sub>n</sub> 51.40         251.09         -1326.20           1.09 V <sub>n</sub> 61.43         251.07         -1312.31           1.09 V <sub>n</sub> 71.71         251.07         -1310.22           1.09 V <sub>n</sub> 80.73         251.03         -1327.99           1.09 V <sub>n</sub> 91.08         251.19         -1318.83           1.09 V <sub>n</sub> 98.72         251.05         -1309.37           1.10 V <sub>n</sub> 90.41         253.35         -2693.60           1.10 V <sub>n</sub> 10.37         253.39         -2690.70 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |  |  |  |  |

Remark:  $V1_s = 1.08 \text{ V}_n$ .  $V2_s = 1.1 \text{ V}_n$ .  $V1i = 0.92 \text{ V}_n$ .  $V2_i = 0.9 \text{ V}_n$ . lock-in value  $P=0.2P_n$ . lock-out value  $P=0.05P_n$ .

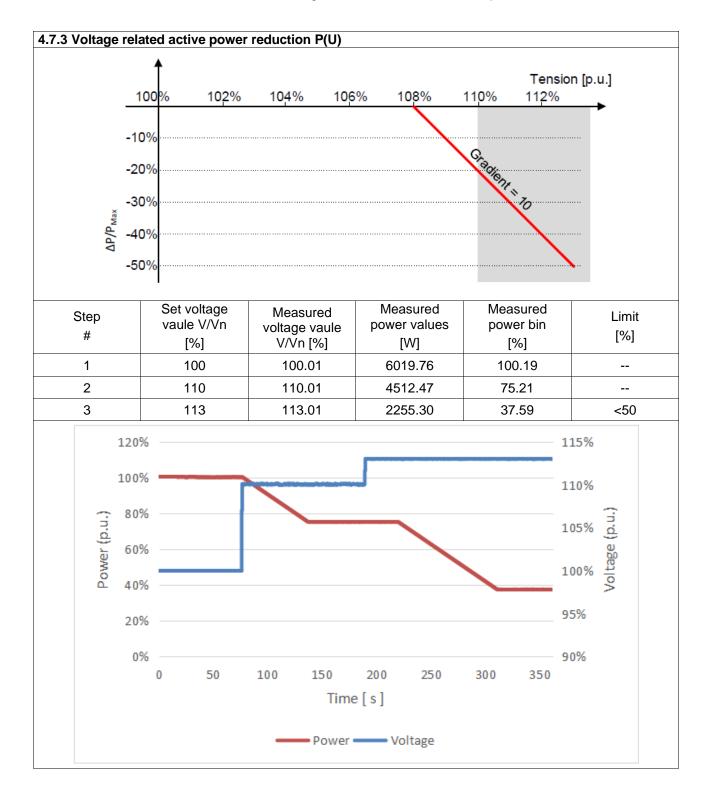
| P/P <sub>n</sub> [%]<br>Set-point | Vac [V] Set-point | P/P <sub>n</sub> [%]<br>measured | Vac [V]<br>Measured | Q [VAr]<br>measured | Q [Var] expected          | Δ Q [Var]<br>(≤ ± 5 %P <sub>n</sub> ) |
|-----------------------------------|-------------------|----------------------------------|---------------------|---------------------|---------------------------|---------------------------------------|
| < 20 %                            | 0.93 Vn           | 15.07                            | 213.92              | 60.01               | ≈0 (< ± 5 % Pn)           | 1.00                                  |
| < 20 %                            | 0.91 Vn           | 15.11                            | 209.34              | 62.36               | ≈0 (< ± 5 % Pn)           | 1.04                                  |
| <20 % <b>→</b> 30 %               | 0.91 Vn           | 25.65                            | 209.24              | 1221.68             | 1307.40<br>(within 10sec) | -1.43                                 |
| 40 %                              | 0.91 Vn           | 40.57                            | 209.40              | 1274.79             | 1307.40                   | -0.54                                 |
| 50 %                              | 0.91 Vn           | 50.08                            | 209.35              | 1288.11             | 1307.40                   | -0.32                                 |
| 60 %                              | 0.91 Vn           | 60.66                            | 209.33              | 1292.69             | 1307.40                   | -0.25                                 |
| 70 %                              | 0.91 Vn           | 71.00                            | 209.33              | 1269.33             | 1307.40                   | -0.63                                 |
| 80 %                              | 0.91 Vn           | 80.11                            | 209.39              | 1277.21             | 1307.40                   | -0.50                                 |
| 90 %                              | 0.91 Vn           | 90.53                            | 209.38              | 1295.42             | 1307.40                   | -0.20                                 |
| 100 %                             | 0.91 Vn           | 98.19                            | 209.39              | 1303.32             | 1307.40                   | -0.07                                 |
| 100 %                             | 0.90 Vn           | 91.61                            | 206.68              | 2604.76             | 2614.80                   | -0.17                                 |
| 100 % →10<br>%                    | 0.90 Vn           | 11.15                            | 206.42              | 2611.23             | 2614.80                   | -0.06                                 |
| 10 % → ≤ 5<br>%                   | 0.91 Vn           | 4.79                             | 206.56              | 81.75               | ≈0 (< ± 5 % Pn)           | 1.36                                  |

Remark:  $V1_s = 1.08 \text{ V}_n$ .  $V2_s = 1.1 \text{ V}_n$ .  $V1i = 0.92 \text{ V}_n$ .  $V2_i = 0.9 \text{ V}_n$ . lock-in value  $P=0.2P_n$ . lock-out value  $P=0.05P_n$ 









| 4.7.2.3.4 Power related control modes |                        |                        |                             |                              |                                       |                                        |                            |                               |  |
|---------------------------------------|------------------------|------------------------|-----------------------------|------------------------------|---------------------------------------|----------------------------------------|----------------------------|-------------------------------|--|
| P Desired<br>(%Sn)                    | P<br>measured<br>(%Sn) | Q<br>measured<br>(Var) | Voltage<br>Desired<br>(%Un) | Voltage<br>Measured<br>(%Un) | Power<br>Factor<br>desired<br>(cos φ) | Power<br>Factor<br>measured<br>(cos φ) | △Q<br>(%S <sub>Max</sub> ) | Limit<br>(%S <sub>Max</sub> ) |  |
| 20%                                   | 20.60                  | -70.19                 | <105%                       | 103.87                       | 1.0000                                | 0.9983                                 | -1.17                      | ±2                            |  |
| 30%                                   | 30.49                  | -63.42                 | <105%                       | 103.83                       | 1.0000                                | 0.9994                                 | -1.06                      | ±2                            |  |
| 40%                                   | 40.45                  | -75.38                 | <105%                       | 103.73                       | 1.0000                                | 0.9995                                 | -1.26                      | ±2                            |  |
| 50%                                   | 50.64                  | -85.43                 | <105%                       | 103.78                       | 1.0000                                | 0.9996                                 | -1.42                      | ±2                            |  |
| 60%                                   | 61.04                  | -98.54                 | <105%                       | 104.01                       | 1.0000                                | 0.9996                                 | -1.64                      | ±2                            |  |
| 60%                                   | 61.07                  | -715.69                | >105%                       | 106.01                       | 0.9800                                | 0.9814                                 | 0.26                       | ±2                            |  |
| 70%                                   | 70.50                  | -1216.04               | >105%                       | 106.13                       | 0.9600                                | 0.9610                                 | 0.15                       | ±2                            |  |
| 80%                                   | 80.70                  | -1711.15               | >105%                       | 106.21                       | 0.9400                                | 0.9428                                 | 0.52                       | ±2                            |  |
| 90%                                   | 90.37                  | -2295.71               | >105%                       | 106.34                       | 0.9200                                | 0.9208                                 | 0.08                       | ±2                            |  |
| 100%                                  | 90.94                  | -2639.49               | >105%                       | 106.42                       | 0.9000                                | 0.9001                                 | -0.42                      | ±2                            |  |
| 100%                                  | 100.43                 | -94.56                 | <100%                       | 100.10                       | 1.0000                                | 0.9998                                 | -1.58                      | ±2                            |  |

Remark: Tested at lock-in voltage 1.05 Vn and lock-out voltage Vn.

The Lock-in value is adjustable between Vn and 1.1Vn in 0.01V steps, the Lock-out value is adjustable between 0.9Vn and Vn in 0.01V steps









## 4.8 EMC

| TABLE: F      | lick    |                                                                                                   |                                                                                                                                                                                       |                                                                                                                                                                              |                                                                                                                                     |                                                                                                                                   |           |      | Р    |
|---------------|---------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------|------|------|
| Model: V      | T-66071 | 06                                                                                                |                                                                                                                                                                                       |                                                                                                                                                                              |                                                                                                                                     |                                                                                                                                   |           |      |      |
| Valı          | ue      | Dc                                                                                                | (%)                                                                                                                                                                                   | Dmax (                                                                                                                                                                       | %) c                                                                                                                                | l(t) – 500m                                                                                                                       | ns        | Pst  | Plt  |
| Limit         |         | 3.30                                                                                              |                                                                                                                                                                                       | 4.00                                                                                                                                                                         |                                                                                                                                     | 3.30%                                                                                                                             |           | 1.00 | 0.65 |
|               | L1      | 0.                                                                                                | 38                                                                                                                                                                                    | 0.70                                                                                                                                                                         |                                                                                                                                     | 0                                                                                                                                 |           | 0.19 | 0.17 |
| Test<br>value | L2      | _                                                                                                 |                                                                                                                                                                                       |                                                                                                                                                                              |                                                                                                                                     |                                                                                                                                   |           |      |      |
| 70.00         | L3      | -                                                                                                 |                                                                                                                                                                                       |                                                                                                                                                                              |                                                                                                                                     |                                                                                                                                   |           |      |      |
|               |         | Element<br>Volt Ra<br>Un (U3<br>Freq(U3<br>Limit<br>No. 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | dc[x] 3.30  0.19 Pass 0.17 Pass 0.18 Pass 0.20 Pass 0.29 Pass 0.22 Pass 0.17 Pass 0.19 Pass 0.17 Pass 0.19 Pass 0.19 Pass 0.17 Pass 0.17 Pass 0.17 Pass 0.17 Pass 0.17 Pass 0.17 Pass | 02 V 12 Hz    dmax[X]   4.00   0.53 Pass   0.52 Pass   0.68 Pass   0.56 Pass   0.65 Pass   0.64 Pass   0.63 Pass   0.63 Pass   0.63 Pass   0.61 Pass   0.61 Pass   0.59 Pass | (t) [ms]  d(t) [ms]  500 3.30(x)  0 Pass | Pst 1.00  0.18 Pass 0.16 Pass 0.16 Pass 0.18 Pass 0.18 Pass 0.19 Pass 0.17 Pass 0.18 Pass 0.18 Pass 0.17 Pass 0.18 Pass 0.18 Pass |           |      |      |
|               |         | 12<br>Result                                                                                      | 0.38 Pass<br>Pass                                                                                                                                                                     | 0.59 Pass<br>Pass                                                                                                                                                            | O Pass<br>Pass                                                                                                                      | 0.15 Pass<br>Pass                                                                                                                 | 0.17 Pass |      |      |
|               |         | Update 36                                                                                         | 00                                                                                                                                                                                    |                                                                                                                                                                              | L1 phase                                                                                                                            | 8 2 5                                                                                                                             |           |      |      |



| Vo1<br>Un<br>Fre                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |            |                                                                                                                                                                                                                                  |      |      |  |  |
|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|--|--|
| Limit  Test value  L1  L2  L3  Flick  Ele Vol Un Fre |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |            |                                                                                                                                                                                                                                  |      |      |  |  |
| Test value L2 L3 Flick                               | Value         Dc (%)         Dmax (%)         d(t) – 500ms         P <sub>st</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |            |                                                                                                                                                                                                                                  |      |      |  |  |
| Test value L2 L3 Flick                               | 3.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.00                     |            | 3.30%                                                                                                                                                                                                                            | 1.00 | 0.65 |  |  |
| value L2 L3 Flick  Flick  Vol Un Fre                 | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.71                     |            | 0                                                                                                                                                                                                                                | 0.19 | 0.17 |  |  |
| L3 Flick Ele Vol Un Fre                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |            |                                                                                                                                                                                                                                  |      |      |  |  |
| Ele<br>Vol<br>Un<br>Fre                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |            |                                                                                                                                                                                                                                  |      |      |  |  |
| No                                                   | Count Interval  Interval  Interval  It Range 300v/5  (U3) 230.60  Interval  Interval | 7 V Tot 5 Hz (E1 dmax[x] | ement3 Jud | 2/12 10m00s/10m00  gement: Pass gement: Pass Pst 1.00  0.18 Pass 0.17 Pass 0.16 Pass 0.16 Pass 0.15 Pass 0.17 Pass |      |      |  |  |



| 4.8      | Table: Harmonic c | urrent emissions | VT-6607106 |                |
|----------|-------------------|------------------|------------|----------------|
| Hamonics |                   | Limit in BS EN   |            |                |
| order n  | 33%               | 66%              | 100%       | 61000-3-12 (%) |
| 2        | 0.28              | 0.29             | 0.33       | 8%             |
| 3        | 0.83              | 0.93             | 1.41       | 21.6%          |
| 4        | 0.04              | 0.07             | 0.09       | 4%             |
| 5        | 0.50              | 0.53             | 0.62       | 10.7%          |
| 6        | 0.04              | 0.02             | 0.02       | 2.67%          |
| 7        | 0.43              | 0.49             | 0.59       | 7.2%           |
| 8        | 0.05              | 0.02             | 0.02       | 2%             |
| 9        | 0.34              | 0.41             | 0.46       | 3.8%           |
| 10       | 0.03              | 0.03             | 0.03       | 1.6%           |
| 11       | 0.19              | 0.29             | 0.34       | 3.1%           |
| 12       | 0.05              | 0.02             | 0.02       | 1.33%          |
| 13       | 0.17              | 0.24             | 0.28       | 2%             |
| 14       | 0.05              | 0.02             | 0.02       | N/A            |
| 15       | 0.14              | 0.16             | 0.19       | N/A            |
| 16       | 0.04              | 0.02             | 0.03       | N/A            |
| 17       | 0.11              | 0.15             | 0.15       | N/A            |
| 18       | 0.04              | 0.03             | 0.02       | N/A            |
| 19       | 0.06              | 0.11             | 0.10       | N/A            |
| 20       | 0.02              | 0.03             | 0.02       | N/A            |
| 21       | 0.05              | 0.08             | 0.07       | N/A            |
| 22       | 0.02              | 0.03             | 0.02       | N/A            |
| 23       | 0.03              | 0.06             | 0.05       | N/A            |
| 24       | 0.02              | 0.03             | 0.03       | N/A            |
| 25       | 0.02              | 0.05             | 0.06       | N/A            |
| 26       | 0.02              | 0.02             | 0.02       | N/A            |
| 27       | 0.03              | 0.03             | 0.04       | N/A            |
| 28       | 0.01              | 0.02             | 0.02       | N/A            |
| 29       | 0.02              | 0.04             | 0.04       | N/A            |
| 30       | 0.01              | 0.02             | 0.03       | N/A            |
| 31       | 0.02              | 0.04             | 0.04       | N/A            |
| 32       | 0.02              | 0.02             | 0.02       | N/A            |
| 33       | 0.02              | 0.03             | 0.02       | N/A            |
| 34       | 0.01              | 0.02             | 0.02       | N/A            |
| 35       | 0.02              | 0.02             | 0.02       | N/A            |
| 36       | 0.02              | 0.02             | 0.03       | N/A            |
| 37       | 0.01              | 0.02             | 0.02       | N/A            |
| 38       | 0.01              | 0.02             | 0.02       | N/A            |
| 39       | 0.01              | 0.02             | 0.03       | N/A            |
| 40       | 0.01              | 0.01             | 0.02       | N/A            |
| THD      | 1.17              | 1.38             | 1.84       | 13%            |
| PWHD     | 0.95              | 1.30             | 1.34       | 22%            |

Page 73 of 98

| 4.8      | Table: Harmonic currer |                    | VT-6607100 |                   |
|----------|------------------------|--------------------|------------|-------------------|
| Hamonics |                        | Measured Value (A) |            | Limit in BS EN    |
| order n  | 33%                    | 66%                | 100%       | 61000-3-2 in Amps |
| 2        | 0.083                  | 0.089              | 0.101      | 1.080             |
| 3        | 0.266                  | 0.242              | 0.246      | 2.300             |
| 4        | 0.028                  | 0.025              | 0.028      | 0.430             |
| 5        | 0.132                  | 0.134              | 0.139      | 1.140             |
| 6        | 0.021                  | 0.012              | 0.007      | 0.300             |
| 7        | 0.093                  | 0.116              | 0.118      | 0.770             |
| 8        | 0.009                  | 0.012              | 0.005      | 0.230             |
| 9        | 0.038                  | 0.090              | 0.097      | 0.400             |
| 10       | 0.009                  | 0.007              | 0.005      | 0.184             |
| 11       | 0.023                  | 0.054              | 0.074      | 0.330             |
| 12       | 0.006                  | 0.010              | 0.011      | 0.153             |
| 13       | 0.009                  | 0.047              | 0.065      | 0.210             |
| 14       | 0.009                  | 0.015              | 0.012      | 0.131             |
| 15       | 0.018                  | 0.040              | 0.045      | 0.150             |
| 16       | 0.007                  | 0.011              | 0.009      | 0.115             |
| 17       | 0.022                  | 0.030              | 0.034      | 0.132             |
| 18       | 0.009                  | 0.012              | 0.008      | 0.102             |
| 19       | 0.019                  | 0.016              | 0.021      | 0.118             |
| 20       | 0.005                  | 0.003              | 0.004      | 0.092             |
| 21       | 0.016                  | 0.012              | 0.020      | 0.107             |
| 22       | 0.005                  | 0.004              | 0.007      | 0.084             |
| 23       | 0.014                  | 0.010              | 0.016      | 0.098             |
| 24       | 0.006                  | 0.003              | 0.010      | 0.077             |
| 25       | 0.005                  | 0.005              | 0.016      | 0.090             |
| 26       | 0.004                  | 0.003              | 0.007      | 0.071             |
| 27       | 0.008                  | 0.007              | 0.008      | 0.083             |
| 28       | 0.004                  | 0.003              | 0.003      | 0.066             |
| 29       | 0.006                  | 0.005              | 0.007      | 0.078             |
| 30       | 0.005                  | 0.003              | 0.003      | 0.061             |
| 31       | 0.007                  | 0.004              | 0.006      | 0.073             |
| 32       | 0.003                  | 0.003              | 0.004      | 0.058             |
| 33       | 0.008                  | 0.003              | 0.008      | 0.068             |
| 34       | 0.003                  | 0.002              | 0.004      | 0.054             |
| 35       | 0.008                  | 0.004              | 0.008      | 0.064             |
| 36       | 0.005                  | 0.006              | 0.007      | 0.051             |
| 37       | 0.007                  | 0.003              | 0.007      | 0.061             |
| 38       | 0.002                  | 0.003              | 0.004      | 0.048             |
| 39       | 0.005                  | 0.003              | 0.007      | 0.058             |
| 40       | 0.003                  | 0.003              | 0.004      | 0.046             |
| THD      | 2.402                  | 2.538              | 2.778      | 5%                |



| able 4.9.3 Inte                                             | rface protection                          |                          |                           |                                                                            | Р                |  |
|-------------------------------------------------------------|-------------------------------------------|--------------------------|---------------------------|----------------------------------------------------------------------------|------------------|--|
| Undervoltage threshold stage 1 [27 < ] Adjustment range Yes |                                           |                          |                           |                                                                            |                  |  |
| Trip v                                                      | value Config. from 0.                     | 2 to 1 Un (0.01 Ur       | n steps)                  | Yes                                                                        |                  |  |
| Trip                                                        | time Config. from 0                       | .1 to 100 s (0.1 s       | steps)                    | Yes                                                                        |                  |  |
| Parameter                                                   | Settings                                  | Test 1                   | Test 2                    | Test 3                                                                     | Limits           |  |
| Trip value L1[V]                                            | 46                                        | 45.64                    | 45.84                     | 45.31                                                                      | 46±2.3           |  |
| Trip time [ms]                                              | 100                                       | 98.40                    | 99.20                     | 99.40                                                                      | 100±10           |  |
| L2 [V]                                                      |                                           |                          |                           |                                                                            | 46±2.3           |  |
| Trip time [ms]                                              |                                           |                          |                           |                                                                            | 100±10           |  |
| L3 [V]                                                      |                                           |                          |                           |                                                                            | 46±2.3           |  |
| Trip time [ms]                                              |                                           |                          |                           |                                                                            | 100±10           |  |
| L1L2L3[V]                                                   |                                           |                          |                           |                                                                            | 46±2.3           |  |
| Trip time [ms]                                              |                                           |                          |                           |                                                                            | 100±10           |  |
| Parameter                                                   | Settings                                  | Test 1                   | Test 2                    | Test 3                                                                     | Limits           |  |
| Trip value L1[V]                                            | 46                                        | 44.73                    | 45.46                     | 45.22                                                                      | 46±2.3           |  |
| Trip time [s]                                               | 100                                       | 100.00                   | 99.98                     | 99.99                                                                      | 100±10           |  |
| L2 [V]                                                      |                                           |                          |                           |                                                                            | 46±2.3           |  |
| Trip time [s]                                               |                                           |                          |                           |                                                                            | 100±10           |  |
| L3 [V]                                                      |                                           |                          |                           |                                                                            | 46±2.3           |  |
| Trip time [s]                                               |                                           |                          |                           |                                                                            | 100±10           |  |
| L1L2L3[V] Trip time [s]                                     |                                           |                          |                           |                                                                            | 46±2.3<br>100±10 |  |
|                                                             |                                           | Trip time (              | 0.1s setting)             |                                                                            | 100210           |  |
|                                                             | 3 20.0 V<br>3 50.0 A Value<br>4 RMS 45.64 | Mean Min<br>V 45.64 45.6 | ms 1.25MS/s 5M points Max | 5.200ms 21.45 V<br>98.40ms \(\Delta 20.34 \text{ V}\) 0.00 V Std Dev 0.000 |                  |  |
|                                                             | 16K Stop                                  | <b>a</b> :               |                           | <b>5</b>                                                                   |                  |  |
|                                                             | - : : : : : : : : : : : : : : : : : : :   | <mark>_</mark> .         |                           | 47.76 s 1.325 V 52.29 s 21.58 V                                            |                  |  |
|                                                             | 4                                         |                          |                           | 100.0 s △20.26 V                                                           |                  |  |
|                                                             |                                           |                          | <u> </u>                  |                                                                            |                  |  |
|                                                             |                                           |                          | <u> </u>                  |                                                                            |                  |  |
|                                                             |                                           |                          | <u>.</u>                  |                                                                            |                  |  |
|                                                             |                                           |                          |                           |                                                                            |                  |  |
|                                                             | 3                                         |                          |                           |                                                                            |                  |  |
|                                                             |                                           |                          |                           |                                                                            |                  |  |
|                                                             |                                           |                          |                           |                                                                            |                  |  |
|                                                             |                                           | .   .                    |                           | · ·   · : · · · · : · · · · <del>:</del>                                   |                  |  |
|                                                             |                                           |                          |                           |                                                                            |                  |  |
|                                                             |                                           |                          |                           |                                                                            |                  |  |
|                                                             | 1 20.0 V                                  | 20.0 s                   | 25.0kS/s                  | 1 /                                                                        |                  |  |
|                                                             |                                           |                          |                           |                                                                            |                  |  |
|                                                             | 3 50.0 A 4 Value                          | 500 V Mean Min           | 5M points<br>Max          | 0.00 V<br>Std Dev                                                          |                  |  |



| Table 4.9.3 Interface protection                                                                                    |                                             |                                           |                                       |             |        |  |  |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------|---------------------------------------|-------------|--------|--|--|
| Undervoltage threshold stage 2 [27 < < ] Adjustment range  Trip value Config. from 0.2 to 1 Un (0.01 Un steps)  Yes |                                             |                                           |                                       |             |        |  |  |
| Trip v                                                                                                              | alue Config. from 0.2                       | to 1 Un (0.01 Un                          | steps)                                | Yes         |        |  |  |
| Trip                                                                                                                | time Config. from 0.                        | 1 to 5s (0.05 s ste                       | eps)                                  | Yes         |        |  |  |
| Parameter                                                                                                           | Settings                                    | Test 1                                    | Test 2                                | Test 3      | Limits |  |  |
| Trip value L1 [V]                                                                                                   | 46                                          | 45.67                                     | 45.18                                 | 45.96       | 46±2.3 |  |  |
| Trip time [ms]                                                                                                      | 100                                         | 98.80                                     | 96.97                                 | 97.64       | 100±10 |  |  |
| L2 [V]                                                                                                              |                                             |                                           |                                       |             | 46±2.3 |  |  |
| Trip time [ms]                                                                                                      |                                             |                                           |                                       |             | 100±10 |  |  |
| L3 [V]                                                                                                              |                                             |                                           |                                       |             | 46±2.3 |  |  |
| Trip time [ms]                                                                                                      |                                             |                                           |                                       |             | 100±10 |  |  |
| L1L2L3[V]                                                                                                           |                                             |                                           |                                       |             | 46±2.3 |  |  |
| Trip time [ms]                                                                                                      |                                             |                                           |                                       |             | 100±10 |  |  |
| Parameter                                                                                                           | Settings                                    | Test 1                                    | Test 2                                | Test 3      | Limits |  |  |
| Trip value L1 [V]                                                                                                   | 46                                          | 45.58                                     | 44.79                                 | 44.86       | 46±2.3 |  |  |
| Trip time [s]                                                                                                       | 5                                           | 4.985                                     | 4.990                                 | 4.982       | 5±0.05 |  |  |
| L2 [V]                                                                                                              | <u> </u>                                    | 1.000                                     | 1.000                                 | 11002       | 46±2.3 |  |  |
| Trip time [s]                                                                                                       |                                             |                                           |                                       |             | 5±0.05 |  |  |
| L3 [V]                                                                                                              |                                             |                                           |                                       |             | 46±2.3 |  |  |
| Trip time [s]                                                                                                       |                                             |                                           |                                       |             | 5±0.05 |  |  |
| L1L2L3[V]                                                                                                           |                                             |                                           |                                       |             | 46±2.3 |  |  |
| Trip time [s]                                                                                                       |                                             |                                           |                                       |             | 5±0.05 |  |  |
|                                                                                                                     | 3 20.0 V<br>3 50.0 A Value<br>4 RMS 45.67 V | 500 V Z 40.0ms<br>Mean Min<br>45.67 45.67 | 1.25MS/s 5M points Max 45.67 0.00     | ms Δ20.44 V |        |  |  |
|                                                                                                                     | <b>Tek</b> PreVu                            | Trip time (5                              |                                       |             | ı      |  |  |
|                                                                                                                     | 3 Zoom Factor: 2 X                          | Zoom Position: 90.0ms                     | (5)                                   |             |        |  |  |
|                                                                                                                     | 4                                           |                                           | (a) -2.376<br>(b) 2.609<br>(b) 44.985 | s 21.48 V   |        |  |  |
|                                                                                                                     | 3                                           |                                           |                                       |             |        |  |  |
|                                                                                                                     | 20.0 V                                      | Z 1.00 s                                  | 250kS/s                               | <b>D</b> /  |        |  |  |
|                                                                                                                     | 3 50.0 A 4 Value                            | Mean Min                                  | 5M points  Max Std                    | 0.00 V      |        |  |  |



| Table 4.9.3 Interfa      | ce protection        |                    |                                                      |                                                      | Р       |
|--------------------------|----------------------|--------------------|------------------------------------------------------|------------------------------------------------------|---------|
|                          |                      | ge 1 [59 >] Adjus  |                                                      | Yes                                                  | No      |
| Trip value               | e Config. from 1.    | 0 to 1.2 Un (0.01  | Un steps)                                            | Yes                                                  |         |
| Trip tir                 | me Config. from      | 0.1 to 100s (0.1 s | s steps)                                             | Yes                                                  |         |
| Parameter                | Settings             | Test 1             | Test 2                                               | Test 3                                               | Limits  |
| Trip value L1 [V]        | 276                  | 276.3              | 276.4                                                | 277.3                                                | 276±2.3 |
| Trip time [ms]           | 100                  | 98.00              | 97.85                                                | 97.23                                                | 100±10  |
| L2 [V]                   |                      |                    |                                                      |                                                      |         |
| Trip time [ms]           |                      |                    |                                                      |                                                      |         |
| L3 [V]                   |                      |                    |                                                      |                                                      |         |
| Trip time [ms]           |                      |                    |                                                      |                                                      |         |
| L1L2L3[V]                |                      |                    |                                                      |                                                      |         |
| Trip time [ms] Parameter | Settings             | Test 1             | Test 2                                               | Test 3                                               | Limits  |
| Trip value L1 [V]        | 276                  | 277.3              | 276.5                                                | 277.4                                                | 276±2.3 |
| Trip time [s]            | 100                  | 100.00             | 100.00                                               | 100.00                                               | 100±10  |
| L2 [V]                   |                      |                    | 100.00                                               |                                                      | .55210  |
| Trip time [s]            |                      |                    |                                                      |                                                      |         |
| L3 [V]                   |                      |                    |                                                      |                                                      |         |
| Trip time [s]            |                      |                    |                                                      |                                                      |         |
| L1L2L3[V]                |                      |                    |                                                      |                                                      |         |
| Trip time [s]            |                      |                    | (0.4                                                 |                                                      |         |
| Tek                      | ;PreVu               | THP time<br>M 40   | (0.1s setting)                                       |                                                      |         |
| 3)                       | 1 20.0 V<br>3 50.0 A | 500 V              | 0ms 1.25MS/s<br>5M points                            | 44.0ms 21.76 V<br>6.00ms 965.6mV<br>18.00ms Δ20.80 V |         |
|                          | Value<br>4 RMS 276.3 |                    | 3.3 276.3                                            | Std Dev<br>0.000                                     |         |
| T. 1                     | r Dro\/u             | Trip time (        | (100s setting)                                       |                                                      | _       |
| le <u>k</u>              | CPreVu               | <b>a</b> :         | +                                                    |                                                      |         |
| <u></u>                  |                      |                    |                                                      | 95.00 s 21.91 V                                      |         |
| <b>4</b>                 |                      |                    |                                                      | 5.02 s 1.297 V<br>100.0 s △20.62 V                   |         |
|                          |                      |                    |                                                      |                                                      |         |
|                          |                      |                    | ‡ : :                                                |                                                      |         |
| [                        |                      |                    | #                                                    |                                                      |         |
|                          |                      |                    |                                                      |                                                      |         |
| 3>                       |                      |                    |                                                      |                                                      |         |
|                          |                      |                    |                                                      |                                                      |         |
|                          |                      |                    | Ī :                                                  |                                                      |         |
|                          |                      |                    | · <del>I</del> · · · · · · · · · · · · · · · · · · · |                                                      |         |
|                          |                      |                    | <u> </u>                                             |                                                      |         |
|                          |                      |                    |                                                      |                                                      |         |
|                          | 1 20.0 V<br>3 50.0 A | 500 V 20.0         | s 25.0kS/s<br>5M points                              | 0.00 V                                               |         |
|                          | Value                | Mean Mir           | n Max                                                | Std Dev                                              |         |
|                          | 4 RMS 277.3          |                    | 7.3 277.3                                            | 0.000                                                |         |



| Table 4.9.3 Interfac      | e protection                              |                                          |                                                           | ,                                 | Р       |
|---------------------------|-------------------------------------------|------------------------------------------|-----------------------------------------------------------|-----------------------------------|---------|
|                           |                                           | [59 > > ] Adjustr                        |                                                           | Yes                               | No      |
| Trip value                | Config. from 1.0 t                        | o 1.3 Un (0.01 Un                        | steps)                                                    | Yes                               |         |
| Trip tin                  | ne Config. from 0.                        | 1 to 5s (0.05s ste                       | ps)                                                       | Yes                               |         |
| Parameter                 | Settings                                  | Test 1                                   | Test 2                                                    | Test 3                            | Limits  |
| Trip value L1 [V]         | 299                                       | 299.8                                    | 299.60                                                    | 299.20                            | 299±2.3 |
| Trip time [ms]            | 100                                       | 99.32                                    | 97.64                                                     | 98.27                             | 100±10  |
| _2 [V]                    |                                           |                                          |                                                           |                                   |         |
| Trip time [ms]            |                                           |                                          |                                                           |                                   |         |
| L3 [V]                    |                                           |                                          |                                                           |                                   |         |
| Trip time [ms]            |                                           |                                          |                                                           |                                   |         |
| L1L2L3[V]                 |                                           |                                          |                                                           |                                   |         |
| Trip time [ms]  Parameter | Settings                                  | Test 1                                   | Test 2                                                    | Test 3                            | Limits  |
| Trip value L1 [V]         | 299                                       | 300.7                                    | 300.3                                                     | 299.8                             | 299±2.3 |
| Trip time [s]             | 5                                         | 4.985                                    | 4.992                                                     | 4.996                             | 5±0.05  |
| _2 [V]                    |                                           |                                          |                                                           |                                   |         |
| Trip time [s]             |                                           |                                          |                                                           |                                   |         |
| L3 [V]                    |                                           |                                          |                                                           |                                   |         |
| Trip time [ms]            |                                           |                                          |                                                           |                                   |         |
| L1L2L3[V]                 |                                           |                                          |                                                           |                                   |         |
| Trip time [s]             |                                           | Trip time (0.                            | 1e cotting)                                               |                                   |         |
| Te <u>k Pre</u>           | /u                                        | M 400ms                                  |                                                           |                                   |         |
| <b>4</b> /W/W/W           | ################################          | KONKONONON UNONONONONONON                | YADAYADIYYADIYADIYADIYADIYADIYYADIYADIYA                  | HYAHYAHYAHAAHAAHAAHAAHAAHAAHAAHAA |         |
|                           | NATORAORAORAORAORAORAORAORAORAORAORA      |                                          |                                                           |                                   |         |
| D                         | mananananananananananana                  | аланинанинанинани                        |                                                           |                                   |         |
| Zoom                      | Factor: 4 X Z                             | oom Position: -18.0ms                    |                                                           |                                   |         |
| і.<br>М. л. л             |                                           |                                          | <b>[</b> ]                                                | 00ms 1.119 V                      |         |
| <b>₽</b> {\\\             | AAAAAAAAAAAAA                             | VAAAAAAAAAAAAAA                          | \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                    | 2ms 21.56 V                       |         |
| F. A. A.                  | 7: V: | Δ: Δ· Δ· Δ· Δ· Δ· Δ· Δ· Π· Π· Π· Π·      | M. A. A. M. T.        | 32ms △20.44 V                     |         |
| <u>.</u>                  |                                           |                                          |                                                           |                                   |         |
|                           | AAAAAAAAAA                                | \^^^^\                                   |                                                           |                                   |         |
| 3                         | 1                                         | A: A | V                                                         |                                   |         |
|                           |                                           |                                          |                                                           |                                   |         |
| -                         |                                           |                                          |                                                           |                                   |         |
| D.                        | 20.0 V                                    | ∑ 100ms                                  | 1.25MS/s                                                  |                                   |         |
| 3                         | 50.0 A <b>4</b> 5                         | 00 V                                     | 5M points                                                 | 0.00 V                            |         |
| 4                         | Value<br>RMS 299.8 V                      | Mean Min<br>299.8 299.8                  |                                                           | d Dev<br>000                      |         |
| -                         |                                           | Trip time (5                             |                                                           |                                   |         |
| Te <u>k</u> Pre'          | fu                                        | M 2.00 s                                 |                                                           |                                   |         |
| 4                         |                                           | a                                        | Б                                                         |                                   |         |
| 3                         |                                           |                                          |                                                           |                                   |         |
|                           |                                           |                                          |                                                           |                                   |         |
| <u> </u>                  | Factor: 2 X Z                             |                                          | <u> </u>                                                  |                                   |         |
|                           | FACTOR. Z A                               | oom Position: 780ms                      | <del></del>                                               |                                   |         |
|                           | <u>a</u>                                  | oom Position: 780ms                      |                                                           | 43 s 1.097 V                      |         |
|                           | <u>a</u>                                  | · ' ' ' ' ! <mark>▼ ' ' ' ‡</mark> '     | <b>a</b> −1.74<br><b>b</b> 3.24                           | 2 s 21.60 V                       |         |
| Zoom                      | <u>a</u>                                  | · ' ' ' ' ! <mark>▼ ' ' ' ‡</mark> '     | <b>a</b> −1.74                                            | 2 s 21.60 V                       |         |
| Zoom                      | <u>a</u>                                  | · ' ' ' ' ! <mark>▼ ' ' ' ‡</mark> '     | <b>a</b> −1.74<br><b>b</b> 3.24                           | 2 s 21.60 V                       |         |
| 4                         | <u>a</u>                                  | · ' ' ' ' ! <mark>▼ ' ' ' ‡</mark> '     | <b>a</b> −1.74<br><b>b</b> 3.24                           | 2 s 21.60 V                       |         |
| Zoom                      | <u>a</u>                                  | · ' ' ' ' ! <mark>▼ ' ' ' ‡</mark> '     | <b>a</b> −1.74<br><b>b</b> 3.24                           | 2 s 21.60 V                       |         |
| 4                         | <u>a</u>                                  | · ' ' ' ' ! <mark>▼ ' ' ' ‡</mark> '     | <b>a</b> −1.74<br><b>b</b> 3.24                           | 2 s 21.60 V                       |         |
| 4                         | <u>a</u>                                  | · ' ' ' ' ! <mark>▼ ' ' ' ‡</mark> '     | <b>a</b> −1.74<br><b>b</b> 3.24                           | 2 s 21.60 V                       |         |
| 4                         |                                           |                                          | <ul> <li>3 −1.74</li> <li>3 3.24</li> <li>△4.9</li> </ul> | 2 s 21.60 V                       |         |
| 4                         | 20.0 V                                    | · ' ' ' ' ! <mark>▼ ' ' ' ‡</mark> '     | 3 −1.7/<br>3 3.24<br>Δ4.9<br>250kS/s<br>5M points         | 2 s 21.60 V<br>85 s △20.50 V      |         |

## Page 78 of 98

| Table 4.9.3 Interface protection                      |                                                                |               |                 |                |            |              |  |
|-------------------------------------------------------|----------------------------------------------------------------|---------------|-----------------|----------------|------------|--------------|--|
| Overvo                                                | oltage                                                         | 10 min mean p | otection Adjust | ment range     | Yes        | No           |  |
| Trip value Config. from 1.0 to 1.15Un (0.01 Un steps) |                                                                |               |                 |                | Yes        |              |  |
| Trip time                                             | Trip time Config ≤ 3s not adjustable Time delay setting = 0 ms |               |                 |                |            |              |  |
| Paramete                                              | er Settings Test 1 Test 2                                      |               |                 |                | Test 3     | Limits       |  |
| Trip value L1                                         | [V]                                                            | 253           | 253.03          | 253.06         | 253.04     | 253±1%       |  |
| Trip time [s]                                         | -                                                              | < 603s        | 403.2           | 401.4          | 402.2      | ≤ 603s       |  |
| _2 [V]                                                |                                                                |               |                 |                |            |              |  |
| Trip time [s]                                         |                                                                |               |                 |                |            |              |  |
| _3 [V]                                                |                                                                |               |                 |                |            |              |  |
| Trip time [s]                                         |                                                                |               |                 |                |            |              |  |
| _1L2L3[V]                                             |                                                                |               |                 |                |            |              |  |
| Trip time [s]                                         |                                                                |               |                 |                |            |              |  |
|                                                       |                                                                |               | Gra             | ph_L1          |            |              |  |
|                                                       |                                                                | 120%          |                 |                | 120%       |              |  |
|                                                       |                                                                | 100%          |                 |                | 115%       |              |  |
|                                                       |                                                                |               |                 |                | 115%       |              |  |
|                                                       |                                                                | 80%           |                 |                |            | 0            |  |
|                                                       | %                                                              |               |                 |                | 110% 5     | <del>.</del> |  |
|                                                       | /er                                                            | 60%           |                 |                |            | 20           |  |
|                                                       | Power (%)                                                      |               |                 |                | 110%       | 5            |  |
|                                                       |                                                                | 40%           |                 | //             |            | >            |  |
|                                                       |                                                                | 200/          |                 | /              | 100%       |              |  |
|                                                       |                                                                | 20%           |                 |                |            |              |  |
|                                                       |                                                                | 0%            |                 |                | 95%        |              |  |
|                                                       |                                                                |               | 00 400          | 600 800        | 1000       |              |  |
|                                                       |                                                                | 0 20          |                 |                | 1000       |              |  |
|                                                       |                                                                |               | IIII            | ne [ s ]       |            |              |  |
|                                                       |                                                                | _             |                 |                |            |              |  |
|                                                       |                                                                |               | Power —— Vol    | ltage ———Avera | ge voltage |              |  |



| Table 4.9.3 Inte         | erface protection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                | P                |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------|------------------|
|                          | uency threshold st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                | Yes                            | No               |
| Trip \                   | /alue Config. from 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.0 to 50.0Hz (0.1H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | z steps)                                                       | Yes                            |                  |
| Tr                       | rip time Config. from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                |                                |                  |
| t may be require         | ed to have the ability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No                                                             |                                |                  |
| an external sign         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                |                  |
|                          | trips in the range fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                | No                             |                  |
| Parameter                | f less than 20 % Un<br>Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Test 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Test 2                                                         | Test 3                         | Limits           |
| Trip value [Hz]          | 47.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 46.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46.99                                                          | 46.98                          | 47.0±0.05        |
|                          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 104.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100.80                                                         | 100.60                         |                  |
| Trip time [ms] Parameter |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Test 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Test 2                                                         |                                | 100±10<br>Limits |
|                          | Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 47.00                                                          | Test 3                         |                  |
| Trip value [Hz]          | 47.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 47.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                | 46.99                          | 47.0±0.05        |
| Trip time [s]            | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99.98                                                          | 100.00                         | 100±10           |
|                          | <b>Tek</b> PreVu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Trip time (0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                |                                |                  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ANNAN KANKAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                |                                |                  |
|                          | THEORIDAD STORM OF THE STO | DECORDS OF OR OTHER DECORATION OF THE PROPERTY | www.www.aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa                         |                                |                  |
|                          | (3) ALKANIANIANIANIANIANIANIANIANIANIANIANIANIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AND PARTON DE PROPERTO DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                |                                |                  |
|                          | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                |                                |                  |
|                          | Zoom Factor: 10 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Zoom Position: -2.40ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>7 (5)</b>                                                   | <del> </del>                   |                  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A - A - A - A - A - B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ○                                                              | 21.56 V                        |                  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /\/ \/\/ <i>\</i> / \/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \ / \ /   (b) 22.00ms                                          | 987.5mV                        |                  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /·····································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Δ104.4ms                                                       | ∆20.57 V                       |                  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · · ·   · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                |                                |                  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -A-A-A-A-A-J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <del>A/ii</del>                                                |                                |                  |
|                          | 3)[.\/\/!\/\/!\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /. \/  \/. \ <i>/</i>  \/. \ <i>f</i>  \/ .\ <i>f</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | i.\/                                                           |                                |                  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | į                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V                                                              |                                |                  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                |                                |                  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                |                                |                  |
|                          | 20.0 V<br>3 50.0 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Z 40.0m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                | .00 V                          |                  |
|                          | JULIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A 500 V II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                |                                |                  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mean Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                |                                |                  |
|                          | Value 4 Frequency 46.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9 Hz 46.99 46.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Max Std Dev<br>46.99 0.000                                     |                                |                  |
|                          | Value 4 Frequency 46.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Max Std Dev<br>46.99 0.000                                     |                                |                  |
|                          | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9 Hz 46.99 46.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Max Std Dev<br>46.99 0.000                                     |                                |                  |
|                          | Value 4 Frequency 46.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9 Hz 46.99 46.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Max Std Dev<br>46.99 0.000<br>00s setting)                     | 21.57 V                        |                  |
|                          | Value Frequency 46.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9 Hz 46.99 46.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Max Std Dev<br>46.99 0.000<br>00s setting)  3 -48.75 s 51.25 s | 21.57 V<br>21.56 V             |                  |
|                          | Value 4 Frequency 46.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9 Hz 46.99 46.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Max Std Dev<br>46.99 0.000<br>00s setting)                     | 21.57 V                        |                  |
|                          | Value Frequency 46.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9 Hz 46.99 46.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Max Std Dev<br>46.99 0.000<br>00s setting)  3 -48.75 s 51.25 s | 21.57 V<br>21.56 V             |                  |
|                          | Value Frequency 46.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9 Hz 46.99 46.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Max Std Dev<br>46.99 0.000<br>00s setting)  3 -48.75 s 51.25 s | 21.57 V<br>21.56 V             |                  |
|                          | Value Frequency 46.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9 Hz 46.99 46.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Max Std Dev<br>46.99 0.000<br>00s setting)  3 -48.75 s 51.25 s | 21.57 V<br>21.56 V             |                  |
|                          | Value Frequency 46.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9 Hz 46.99 46.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Max Std Dev<br>46.99 0.000<br>00s setting)  3 -48.75 s 51.25 s | 21.57 V<br>21.56 V             |                  |
|                          | Value Frequency 46.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9 Hz 46.99 46.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Max Std Dev<br>46.99 0.000<br>00s setting)  3 -48.75 s 51.25 s | 21.57 V<br>21.56 V             |                  |
|                          | Tek Stop  46.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9 Hz 46.99 46.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Max Std Dev<br>46.99 0.000<br>00s setting)  3 -48.75 s 51.25 s | 21.57 V<br>21.56 V             |                  |
|                          | Tek Stop  46.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9 Hz 46.99 46.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Max Std Dev<br>46.99 0.000<br>00s setting)  3 -48.75 s 51.25 s | 21.57 V<br>21.56 V             |                  |
|                          | Tek Stop  46.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9 Hz 46.99 46.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Max Std Dev<br>46.99 0.000<br>00s setting)  3 -48.75 s 51.25 s | 21.57 V<br>21.56 V             |                  |
|                          | Tek Stop  46.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9 Hz 46.99 46.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Max Std Dev<br>46.99 0.000<br>00s setting)  3 -48.75 s 51.25 s | 21.57 V<br>21.56 V             |                  |
|                          | Tek Stop  4 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9 Hz 46.99 46.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Max Std Dev<br>46.99 0.000<br>00s setting)  3 -48.75 s 51.25 s | 21.57 V<br>21.56 V             |                  |
|                          | Tek Stop  1 20.0 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9 Hz 46.99 46.99  Trip time (10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Max 46.99 0.000  OOs setting)  -48.75 s 51.25 s △100.0 s       | 21.57 V<br>21.56 V<br>Δ9.375mV |                  |
|                          | Tek Stop  1 20.0 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9 Hz 46.99 46.99  Trip time (10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Max 46.99 0.000  OOs setting)  -48.75 s 51.25 s △100.0 s       | 21.57 V<br>21.56 V<br>Δ9.375mV |                  |



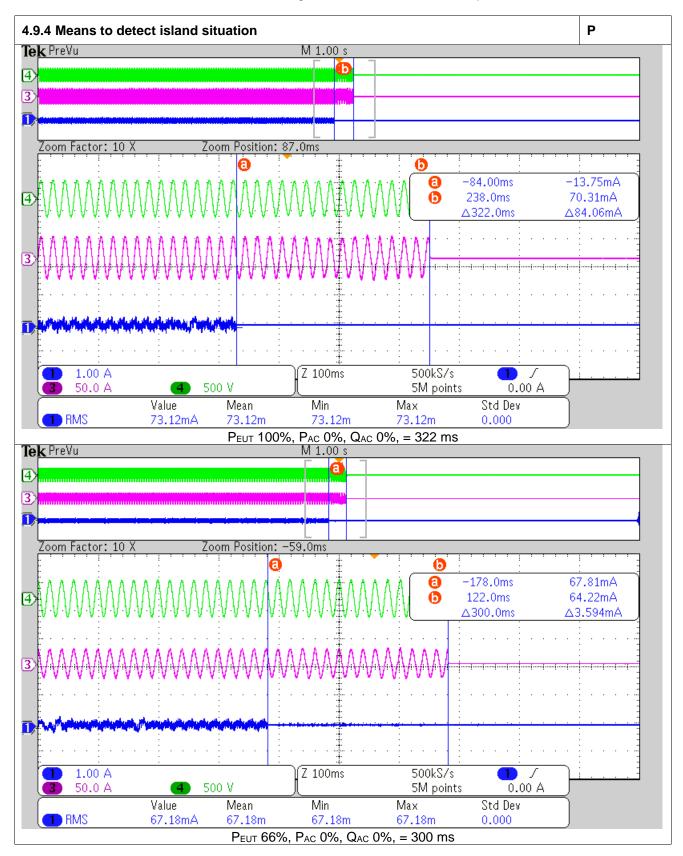
| Table 4.9.3 Inte                                                                                | rface protection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Table 4.9.3 Interface protection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                         |              |  |  |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------|--------------|--|--|
| Underfrequency threshold stage 2 [81 < < ] Adjustment range Yes                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         |              |  |  |
| Trip value Config. from 47.0 to 50.0Hz (0.1Hz steps)                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         |              |  |  |
| Tr                                                                                              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         |              |  |  |
| t may be required to have the ability to activate and deactivate a stage by an external signal. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         | No           |  |  |
| This protection to                                                                              | rips in the range from the right in the range from the right in the ri | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                         |              |  |  |
| Parameter                                                                                       | Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                         |              |  |  |
| Trip value [Hz]                                                                                 | 47.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 46.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46.97                                   | 46.98                   | 47.0±0.05    |  |  |
| Trip time [ms]                                                                                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 106.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 101.70                                  | 100.40                  | 100±10       |  |  |
| Parameter                                                                                       | Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Test 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Test 2                                  | Test 3                  | Limits       |  |  |
| Trip value [Hz]                                                                                 | 47.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 46.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 47.00                                   | 46.99                   | 47.0±0.05    |  |  |
| Trip time [s]                                                                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.00                                    | 5.00                    | 5±0.05       |  |  |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Trip time (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (0.1s setting)                          |                         |              |  |  |
|                                                                                                 | <b>Tek</b> PreVu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Oms -                                   |                         |              |  |  |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AHANHANHANHANHANHANHANHANHANHANHANHAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                         |              |  |  |
|                                                                                                 | 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ARANANANANANANANANANANANANANANANANANANA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | y                                       |                         |              |  |  |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ananananananananananananananana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                       |                         |              |  |  |
|                                                                                                 | Zoom Factor: 10 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Zoom Position: -69.2ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                         |              |  |  |
|                                                                                                 | 200111400111074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>(a)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>                                |                         |              |  |  |
|                                                                                                 | 3 -151.6ms 21.45 V<br>6 -44.80ms 1.047 V<br>Δ106.8ms Δ20.41 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         |              |  |  |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · ·   · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                         |              |  |  |
|                                                                                                 | 3 V V V V \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | / V V V V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | /{ V                                    |                         |              |  |  |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         |              |  |  |
|                                                                                                 | 20.0 V<br>3 50.0 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (Z 40.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | # : : :<br>Oms 1.25MS/s<br>5M points    | 0,00 V                  |              |  |  |
|                                                                                                 | Valu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Max Std                                 | Dev                     |              |  |  |
|                                                                                                 | Trequency 40.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30 40.30 0.00                           | , ,                     |              |  |  |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (5s setting)                            |                         |              |  |  |
|                                                                                                 | Tek PreVu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                         | <u> </u><br> |  |  |
|                                                                                                 | Tek PreVu<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (5s setting)                            |                         |              |  |  |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00 s                                    |                         |              |  |  |
|                                                                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M 2.(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00 s                                    |                         |              |  |  |
|                                                                                                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00 s                                    |                         |              |  |  |
|                                                                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a M 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00 s                                    |                         |              |  |  |
|                                                                                                 | Zoom Factor: 2 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a M 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00 s<br>0                               |                         |              |  |  |
|                                                                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Zoom Position: -220ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00 s                                    | s 1.072 V               |              |  |  |
|                                                                                                 | Zoom Factor: 2 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Zoom Position: -220ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00 s                                    | s 1.072 V               |              |  |  |
|                                                                                                 | Zoom Factor: 2 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Zoom Position: -220ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (a) -2.815<br>(b) 2.205<br>(b) 45.020   | s 1.072 V               |              |  |  |
|                                                                                                 | Zoom Factor: 2 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Zoom Position: -220ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (a) -2.815<br>(b) 2.205<br>(b) 45.020   | s 1.072 V               |              |  |  |
|                                                                                                 | Zoom Factor: 2 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Zoom Position: -220ms  a  Thirms of the boundary of the bounda | 1                                       | s 1.072 V               |              |  |  |
|                                                                                                 | Zoom Factor: 2 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Zoom Position: -220ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                       | s 1.072 V               |              |  |  |
|                                                                                                 | Zoom Factor: 2 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Zoom Position: -220ms  a  Thirms of the boundary of the bounda | 1                                       | s 1.072 V               |              |  |  |
|                                                                                                 | Zoom Factor: 2 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Zoom Position: -220ms  a  Thirms of the boundary of the bounda | 1                                       | s 1.072 V               |              |  |  |
|                                                                                                 | 3 Zoom Factor: 2 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Zoom Position: -220ms  Thomas and the boundary of the control of t | 10 s | s 1.072 V<br>s Δ20.44 V |              |  |  |
|                                                                                                 | Zoom Factor: 2 X  3  3  3  3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Zoom Position: -220ms  Toom Position: -220ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 s  1                                  | s 1.072 V<br>s Δ20.44 V |              |  |  |



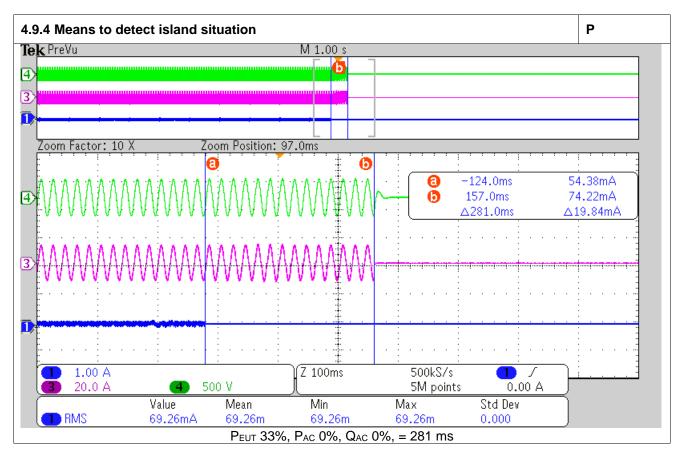
| Table 4.9.3 Interfac             | ce protection                                                                                |                                                                                                                |                                           |              | P                                     |
|----------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------|---------------------------------------|
| Overfrequenc                     | y threshold stage                                                                            | 1 [81 > ] Adjust                                                                                               | ment range                                | Yes          | No                                    |
| Trip value                       | Config. from 50.0                                                                            | to 52.0Hz (0.1Hz                                                                                               | z steps)                                  | Yes          |                                       |
| Trip tir                         | me Config. from 0.1                                                                          | to 100s (0.1s st                                                                                               | eps)                                      | Yes          |                                       |
| it may be required t             | may be required to have the ability to activate and deactivate a stage y an external signal. |                                                                                                                |                                           |              |                                       |
| This protection trips            | in the range from (                                                                          | 0.2Un to 1.20Un.                                                                                               | it is inhibited for                       |              | No                                    |
| input voltages of les  Parameter | Settings                                                                                     | Test 1                                                                                                         | Test 2                                    | Test 3       | Limits                                |
| Trip value [Hz]                  | 52.0                                                                                         | 52.00                                                                                                          | 52.00                                     | 52.00        | 52.0±0.05                             |
| Trip time [ms]                   | 100                                                                                          | 105.60                                                                                                         | 100.20                                    | 100.60       | 100±10                                |
| Parameter                        | Settings                                                                                     | Test 1                                                                                                         | Test 2                                    | Test 3       | Limits                                |
| Trip value [Hz]                  | 52.0                                                                                         | 52.00                                                                                                          | 52.00                                     | 52.01        | 52.0±0.05                             |
| Trip time [s]                    | 100                                                                                          | 100.00                                                                                                         | 100.00                                    | 100.00       | 100±10                                |
| 1 [-]                            | 1 22                                                                                         | Trip time (0.                                                                                                  |                                           |              | , , , , , , , , , , , , , , , , , , , |
| Te <u>k</u>                      | PreVu                                                                                        | M 400ms                                                                                                        | · · · · · · · · · · · · · · · ·           |              |                                       |
| <b>4</b> ***                     | HAOHOHOHOHOHOHOHOHOHOHOHOHOHOHOHOH                                                           |                                                                                                                | HANAN PANANANANANANANANANANANANANANANANAN |              |                                       |
| 3>₩                              | ATTERNATION AND AND AND AND AND AND AND AND AND AN                                           | TO LATOL |                                           |              |                                       |
|                                  | ananananananananananananananananan                                                           | ACHACHACHACHACHACHA THACHARIN                                                                                  |                                           |              |                                       |
| <u>□</u>                         | oom Factor: 10 X Zo                                                                          | oom Position: 30.0ms                                                                                           |                                           |              |                                       |
| -                                | : : (                                                                                        |                                                                                                                | <b>5</b>                                  |              |                                       |
|                                  | Λ·:ΛĖΛ::ΛĖΛ::Λ                                                                               |                                                                                                                | √ ↑ <del>0</del> -59.2                    |              |                                       |
| 47./                             | (. V .V. V .V. V                                                                             | V. V. ₩. V. <b>∦</b> .                                                                                         |                                           |              |                                       |
|                                  |                                                                                              | <u> </u>                                                                                                       |                                           |              |                                       |
|                                  |                                                                                              |                                                                                                                |                                           |              |                                       |
| 3): /                            |                                                                                              |                                                                                                                |                                           |              |                                       |
|                                  | - V - V - V - V - V                                                                          | $\wedge \cdot \wedge \cdot \wedge \cdot \wedge \cdot \not\models \cdot$                                        | · <b>\</b>                                |              |                                       |
|                                  |                                                                                              | <u> </u>                                                                                                       |                                           |              |                                       |
|                                  |                                                                                              | <u> </u>                                                                                                       |                                           |              |                                       |
| D                                | : : <u>:</u>                                                                                 | : ±<br>\(\bar{Z}\) 40.0ms                                                                                      | : : :<br>1.25MS/s                         | 1            |                                       |
|                                  |                                                                                              | 00 V                                                                                                           | 5M points                                 | 0.00 V       |                                       |
|                                  | Value 4 Frequency 52.00 Hz                                                                   | Mean Min<br>52.00 52.00                                                                                        |                                           | d Dev<br>000 |                                       |
|                                  | 4) Frequency 52.00 Hz                                                                        | Trip time (10                                                                                                  |                                           | 000          |                                       |
| Te <u>k</u>                      | Stop                                                                                         | Trip time (10                                                                                                  | os setting)                               |              | 1                                     |
| -                                | <b>a</b>                                                                                     | ‡ · · · · · ‡ ·                                                                                                | 6                                         |              |                                       |
|                                  |                                                                                              |                                                                                                                | (a) -48.5<br>(b) 51.4                     |              |                                       |
| 4                                |                                                                                              |                                                                                                                | ∆100                                      |              |                                       |
|                                  | j j                                                                                          | · · · · · · · · · · · · · · · · · · ·                                                                          |                                           | ; ;          |                                       |
|                                  |                                                                                              | : : :                                                                                                          | : :                                       | : : :        |                                       |
| **                               |                                                                                              | : · · · · : · · · · ‡ ·                                                                                        |                                           |              |                                       |
|                                  |                                                                                              |                                                                                                                |                                           |              |                                       |
|                                  |                                                                                              |                                                                                                                |                                           |              |                                       |
| 3                                |                                                                                              | <u> </u>                                                                                                       |                                           |              |                                       |
| i i                              |                                                                                              |                                                                                                                |                                           |              |                                       |
| -                                |                                                                                              | <u> </u>                                                                                                       |                                           |              |                                       |
| į.                               |                                                                                              |                                                                                                                |                                           |              |                                       |
|                                  |                                                                                              | : <del>.</del> <del></del> .                                                                                   |                                           |              |                                       |
| <u> </u>                         |                                                                                              | <u> </u>                                                                                                       | <u> </u>                                  | L <u>.</u>   |                                       |
|                                  | 1 20.0 V<br>3 50.0 A 4 50                                                                    | 00 V (20.0 s                                                                                                   | 25.0kS/s<br>5M points                     | 0.00 V       |                                       |
|                                  | Value                                                                                        | Mean Min                                                                                                       | <u> </u>                                  | d Dev        |                                       |
|                                  | 4 Frequency 52.00 Hz                                                                         | 52.00 52.00                                                                                                    |                                           | 000          |                                       |



| 1 abit 4.3.3 inte                              | erface protection                                                                          |                                                                               |                                                                                       |                                      | Р         |  |  |
|------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------|-----------|--|--|
| Overfreque                                     | ency threshold stage                                                                       | e 2 [81 > > ] Adjus                                                           | tment range                                                                           | Yes                                  | No        |  |  |
| •                                              | alue Config. from 50                                                                       |                                                                               | _                                                                                     | Yes                                  |           |  |  |
| Trip time Config. from 0.1 to 5s (0.05s steps) |                                                                                            |                                                                               |                                                                                       |                                      |           |  |  |
|                                                | nay be required to have the ability to activate and deactivate a stage an external signal. |                                                                               |                                                                                       |                                      |           |  |  |
| This protection                                | trips in the range fro                                                                     | rips in the range from 0.2Un to 1.20Un.it is inhibited for fless than 20 % Un |                                                                                       |                                      |           |  |  |
| Parameter                                      | Settings                                                                                   | Test 1                                                                        | Test 2                                                                                | Test 3                               | Limits    |  |  |
| Γrip value [Hz]                                | 52.0                                                                                       | 52.00                                                                         | 52.00                                                                                 | 52.01                                | 52.0±0.05 |  |  |
| Trip time [ms]                                 | 100                                                                                        | 104.80                                                                        | 100.40                                                                                | 100.10                               | 100±10    |  |  |
| Parameter                                      | Settings                                                                                   | Test 1                                                                        | Test 2                                                                                | Test 3                               | Limits    |  |  |
| Trip value [Hz]                                | 52.0                                                                                       | 52.00                                                                         | 52.00                                                                                 | 52.00                                | 52.0±0.05 |  |  |
| rip time [s]                                   | 5                                                                                          | 5.02                                                                          | 5.00                                                                                  | 4.99                                 | 5±0.05    |  |  |
| [0]                                            |                                                                                            |                                                                               | 0.1s setting)                                                                         |                                      | 5_0.00    |  |  |
|                                                | <b>Tek</b> PreVu                                                                           | M 400n                                                                        | 18                                                                                    |                                      |           |  |  |
|                                                |                                                                                            | YAANAANAANAANAANAANAANAANAA                                                   |                                                                                       |                                      |           |  |  |
|                                                | 3/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/3                                                      | NAORADAADAADAADAADAADAADAADAADAADAADAADAA                                     | MANA .                                                                                |                                      |           |  |  |
|                                                |                                                                                            | nananahananahanananananah                                                     |                                                                                       |                                      |           |  |  |
|                                                | Zoom Factor: 10 X                                                                          | Zoom Position: 144ms                                                          |                                                                                       |                                      |           |  |  |
|                                                |                                                                                            | <b>a</b>                                                                      | <b>(</b>                                                                              |                                      |           |  |  |
|                                                |                                                                                            | $A \land A \land A \land A \land A$                                           | 51.60<br>6 156.4                                                                      |                                      |           |  |  |
|                                                | **************************************                                                     | /-  V - V - V - V - V - V - V -                                               | [V V]                                                                                 |                                      |           |  |  |
|                                                |                                                                                            |                                                                               |                                                                                       |                                      |           |  |  |
|                                                |                                                                                            |                                                                               |                                                                                       |                                      |           |  |  |
|                                                |                                                                                            |                                                                               |                                                                                       |                                      |           |  |  |
|                                                | 3                                                                                          | $\Lambda \Lambda \Lambda \Lambda \Lambda$                                     |                                                                                       |                                      |           |  |  |
|                                                | 3                                                                                          | M/M/M                                                                         | <b>V</b>                                                                              |                                      |           |  |  |
|                                                | 3                                                                                          | $\bigwedge \bigwedge \bigwedge \bigwedge \bigwedge \bigwedge$                 |                                                                                       |                                      |           |  |  |
|                                                | 3                                                                                          | $\bigwedge / \bigvee / \bigvee / \bigvee$                                     | \                                                                                     |                                      |           |  |  |
|                                                | 3 A 30 0 V                                                                                 |                                                                               | 1 35MC/a                                                                              |                                      |           |  |  |
|                                                | 3 20.0 V<br>50.0 A                                                                         | 500 V (Z 40.0r                                                                | ns 1.25MS/s 5M points                                                                 | 0.00 V                               |           |  |  |
|                                                | 3 50.0 A 4 Value                                                                           |                                                                               | 5M points<br>Max Sto                                                                  | 0.00 V                               |           |  |  |
|                                                | 3 50.0 A 4                                                                                 | 500 V                                                                         | 5M points           Max         Std           52.00         0.0                       | 0.00 V                               |           |  |  |
|                                                | 3 50.0 A Value 4 Frequency 52.00                                                           | 500 V                                                                         | 5M points  Max Sto 52.00 0.0  5s setting)                                             | 0.00 V                               |           |  |  |
|                                                | 3 50.0 A Value Frequency 52.00                                                             | 500 V                                                                         | 5M points  Max Sto 52.00 0.0  5s setting)                                             | 0.00 V                               |           |  |  |
|                                                | 3 50.0 A Value Frequency 52.00                                                             | 500 V                                                                         | 5M points  Max Sto 52.00 0.0  5s setting)                                             | 0.00 V                               |           |  |  |
|                                                | 3 50.0 A Value Frequency 52.00                                                             | 500 V                                                                         | 5M points  Max Sto 52.00 0.0  5s setting)                                             | 0.00 V                               |           |  |  |
|                                                | 3 50.0 A Value 52.00  Tek PreVu  4                                                         | 500 V    Mean   Min                                                           | 5M points  Max Sto 52.00 0.0  5s setting)                                             | 0.00 V                               |           |  |  |
|                                                | 3 50.0 A Value 4 Frequency 52.00  Tek PreVu 4                                              | 500 V                                                                         | 5M points  Max Sto 52.00 0.0  5s setting) s                                           | 0.00 V                               |           |  |  |
|                                                | 3 50.0 A Value 52.00  Tek PreVu  4                                                         | 500 V    Mean   Min                                                           | 5M points  Max Sto 52.00 0.0  5s setting)  5 -2.50                                    | 0.00 V<br>d Dev<br>000               |           |  |  |
|                                                | 3 50.0 A Value 52.00  Tek PreVu  4                                                         | 500 V    Mean   Min                                                           | 5M points  Max 52.00 0.0  5s setting)  5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0          | 0.00 V<br>H Dev<br>1000              |           |  |  |
|                                                | 3 50.0 A Value Frequency 52.00  Tek PreVu  3 Zoom Factor: 2 X                              | 500 V    Mean   Min                                                           | 5M points  Max Sto 52.00 0.0  5s setting)  5 -2.50                                    | 0.00 V<br>H Dev<br>1000              |           |  |  |
|                                                | 3 50.0 A Value Frequency 52.00  Tek PreVu  3 Zoom Factor: 2 X                              | 500 V    Mean   Min                                                           | 5M points  Max 52.00 0.0  5s setting)  5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0          | 0.00 V<br>H Dev<br>1000              |           |  |  |
|                                                | 3 50.0 A Value Frequency 52.00  Tek PreVu  3 Zoom Factor: 2 X                              | 500 V    Mean   Min                                                           | 5M points  Max 52.00 0.0  5s setting)  5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0          | 0.00 V<br>H Dev<br>1000              |           |  |  |
|                                                | 3 50.0 A Value Frequency 52.00  Tek PreVu  3 Zoom Factor: 2 X                              | 500 V    Mean   Min                                                           | 5M points  Max 52.00 0.0  5s setting)  5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0          | 0.00 V<br>H Dev<br>1000              |           |  |  |
|                                                | 3 50.0 A Value Frequency 52.00  Tek PreVu  3 Zoom Factor: 2 X                              | 500 V    Mean   Min                                                           | 5M points  Max 52.00 0.0  5s setting)  5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0          | 0.00 V<br>H Dev<br>1000              |           |  |  |
|                                                | 3 50.0 A Value Frequency 52.00  Tek PreVu  3 Zoom Factor: 2 X                              | 500 V    Mean   Min                                                           | 5M points  Max 52.00 0.0  5s setting)  5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0          | 0.00 V<br>H Dev<br>1000              |           |  |  |
|                                                | 3 50.0 A Value Frequency 52.00  Tek PreVu  3 Zoom Factor: 2 X                              | 500 V    Mean   Min                                                           | 5M points  Max 52.00 0.0  5s setting)  5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0          | 0.00 V<br>H Dev<br>1000              |           |  |  |
|                                                | 3 50.0 A Value Frequency 52.00  Tek PreVu  3 Zoom Factor: 2 X  20.0 V                      | No   No   No   No   No   No   No   No                                         | 5M points  Max 52.00 0.0  5s setting)  s  -2.50 2.51 A5.02  s  250kS/s                | 0.00 V<br>H Dev<br>1000              |           |  |  |
|                                                | 3 50.0 A Value Frequency 52.00  Tek PreVu  3 Zoom Factor: 2 X  4 3 3                       | Trip time ( M 2.00  Zoom Position: 160ms                                      | 5M points  Max Stc 52.00 0.0  5s setting)  s  -2.50 2.515 A5.02  s  250kS/s 5M points | 5 s 1.128 V 5 s 1.041 V 0 s △87.50mV |           |  |  |




| 4.9.4 | Means to d                           | letect island situ                       | ation                                  |                                        |                        |                      |              |      | P                     |
|-------|--------------------------------------|------------------------------------------|----------------------------------------|----------------------------------------|------------------------|----------------------|--------------|------|-----------------------|
| No.   | PEUT <sup>1)</sup> (% of EUT rating) | Reactive load<br>(% of QL in<br>6.1.d)1) | PAC <sup>2)</sup><br>(% of<br>nominal) | QAC <sup>3)</sup><br>(% of<br>nominal) | Run on<br>time<br>(ms) | P <sub>EUT</sub> (W) | Actual<br>Qf | V DC | Remarks <sup>4)</sup> |
| 1.    | 100                                  | 100                                      | 0                                      | 0                                      | 322                    | 6000                 | 0.99         | 355  | Test A at BL          |
| 2.    | 66                                   | 66                                       | 0                                      | 0                                      | 300                    | 3960                 | 1.00         | 270  | Test B at BL          |
| 3.    | 33                                   | 33                                       | 0                                      | 0                                      | 281                    | 1980                 | 0.98         | 168  | Test C at BL          |
| 4.    | 100                                  | 100                                      | -5                                     | -5                                     | 304                    | 6000                 | 1.01         | 355  | Test A at IB          |
| 5.    | 100                                  | 100                                      | -5                                     | 0                                      | 289                    | 6000                 | 1.04         | 355  | Test A at IB          |
| 6.    | 100                                  | 100                                      | -5                                     | 5                                      | 212                    | 6000                 | 1.07         | 355  | Test A at IB          |
| 7.    | 100                                  | 100                                      | 0                                      | -5                                     | 277                    | 6000                 | 0.96         | 355  | Test A at IB          |
| 8.    | 100                                  | 100                                      | 0                                      | 5                                      | 237                    | 6000                 | 1.01         | 355  | Test A at IB          |
| 9.    | 100                                  | 100                                      | 5                                      | -5                                     | 210                    | 6000                 | 0.92         | 355  | Test A at IB          |
| 10.   | 100                                  | 100                                      | 5                                      | 0                                      | 280                    | 6000                 | 0.94         | 355  | Test A at IB          |
| 11.   | 100                                  | 100                                      | 5                                      | 5                                      | 282                    | 6000                 | 0.96         | 355  | Test A at IB          |
| 12.   | 66                                   | 66                                       | 0                                      | -5                                     | 222                    | 3960                 | 0.97         | 270  | Test B at IB          |
| 13.   | 66                                   | 66                                       | 0                                      | -4                                     | 228                    | 3960                 | 0.98         | 270  | Test B at IB          |
| 14.   | 66                                   | 66                                       | 0                                      | -3                                     | 230                    | 3960                 | 0.98         | 270  | Test B at IB          |
| 15.   | 66                                   | 66                                       | 0                                      | -2                                     | 280                    | 3960                 | 0.99         | 270  | Test B at IB          |
| 16.   | 66                                   | 66                                       | 0                                      | -1                                     | 236                    | 3960                 | 0.99         | 270  | Test B at IB          |
| 17.   | 66                                   | 66                                       | 0                                      | 1                                      | 238                    | 3960                 | 1.00         | 270  | Test B at IB          |
| 18.   | 66                                   | 66                                       | 0                                      | 2                                      | 256                    | 3960                 | 1.01         | 270  | Test B at IB          |
| 19.   | 66                                   | 66                                       | 0                                      | 3                                      | 254                    | 3960                 | 1.01         | 270  | Test B at IB          |
| 20.   | 66                                   | 66                                       | 0                                      | 4                                      | 242                    | 3960                 | 1.02         | 270  | Test B at IB          |
| 21.   | 66                                   | 66                                       | 0                                      | 5                                      | 168                    | 3960                 | 1.02         | 270  | Test B at IB          |
| 22.   | 33                                   | 33                                       | 0                                      | -5                                     | 203                    | 1980                 | 0.96         | 168  | Test C at IB          |
| 23.   | 33                                   | 33                                       | 0                                      | -4                                     | 218                    | 1980                 | 0.96         | 168  | Test C at IB          |
| 24.   | 33                                   | 33                                       | 0                                      | -3                                     | 220                    | 1980                 | 0.97         | 168  | Test C at IB          |
| 25.   | 33                                   | 33                                       | 0                                      | -2                                     | 242                    | 1980                 | 0.97         | 168  | Test C at IB          |
| 26.   | 33                                   | 33                                       | 0                                      | -1                                     | 230                    | 1980                 | 0.98         | 168  | Test C at IB          |
| 27.   | 33                                   | 33                                       | 0                                      | 1                                      | 263                    | 1980                 | 0.99         | 168  | Test C at IB          |
| 28.   | 33                                   | 33                                       | 0                                      | 2                                      | 245                    | 1980                 | 0.99         | 168  | Test C at IB          |
| 29.   | 33                                   | 33                                       | 0                                      | 3                                      | 256                    | 1980                 | 1.00         | 168  | Test C at IB          |
| 30.   | 33                                   | 33                                       | 0                                      | 4                                      | 200                    | 1980                 | 1.00         | 168  | Test C at IB          |
| 31.   | 33                                   | 33                                       | 0                                      | 5                                      | 160                    | 1980                 | 1.01         | 168  | Test C at IB          |

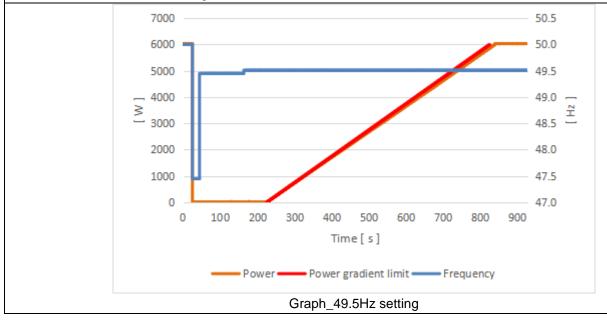

#### Remark

- 1) PEUT: EUT output power
- 2) PAC: Real power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value.
- 3) QAC: Reactive power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value.
- 4) BL: Balance condition, IB: Imbalance condition.

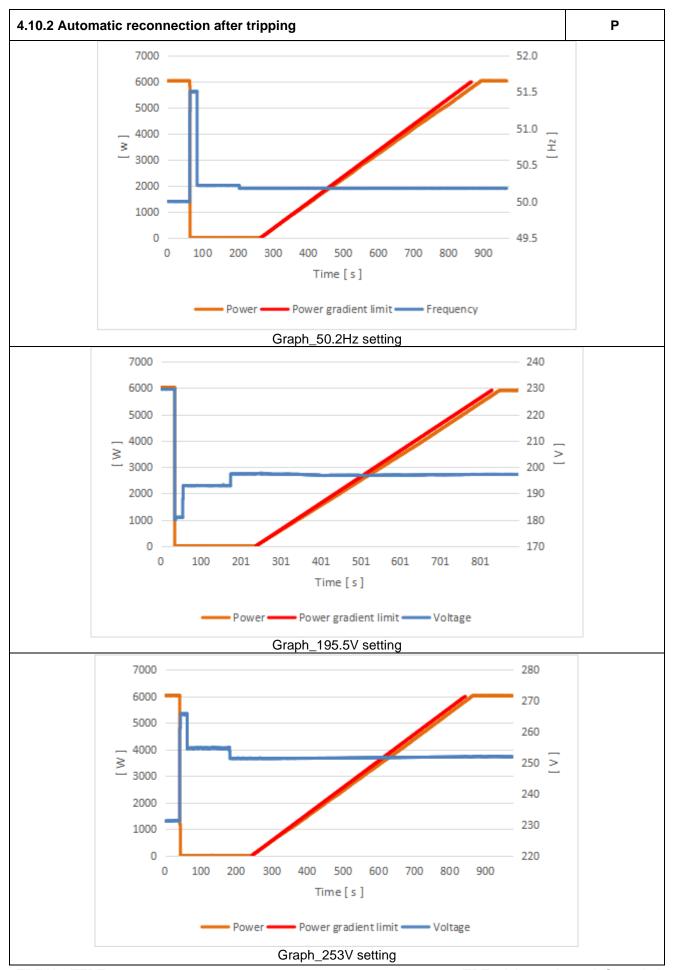












| 4.10.2 Automatic reconnection after | Р               |                 |  |
|-------------------------------------|-----------------|-----------------|--|
| Parameter                           | Range           | Default setting |  |
| Lower frequency                     | 47,0Hz – 50,0Hz | 49,5Hz          |  |
| Upper frequency                     | 50,0Hz - 52,0Hz | 50,2Hz          |  |
| Lower voltage                       | 50% - 100%Un    | 85 % Un         |  |
| Upper voltage                       | 100% – 120% Un  | 110 % Un        |  |
| Observation time                    | 10s – 600s      | 60s             |  |
| Active power increase gradient      | 6% – 3000%/min  | 10%/min         |  |

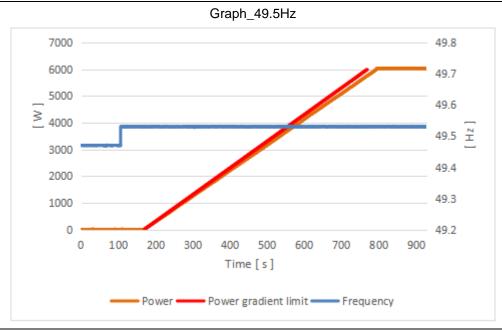
| Test sequence<br>after trip | connection | connection<br>allowed | Observation time<br>(s) | Power<br>gradient after<br>Connection<br>(%/min) |
|-----------------------------|------------|-----------------------|-------------------------|--------------------------------------------------|
| Step a)                     | <49.5Hz    | No                    |                         |                                                  |
| Step b)                     | ≥49.5Hz    | Yes                   | 61.0                    | 9.70                                             |
| Step c)                     | >50.2Hz    | No                    |                         |                                                  |
| Step d)                     | ≤50.2Hz    | Yes                   | 61.0                    | 9.63                                             |
| Step e)                     | <195.5V    | No                    |                         |                                                  |
| Step f)                     | ≥195.5V    | Yes                   | 61.0                    | 9.78                                             |
| Step g)                     | >253V      | No                    |                         |                                                  |
| Step h)                     | ≤253V      | Yes                   | 61.0                    | 9.72                                             |

Remark: Tested at default setting.

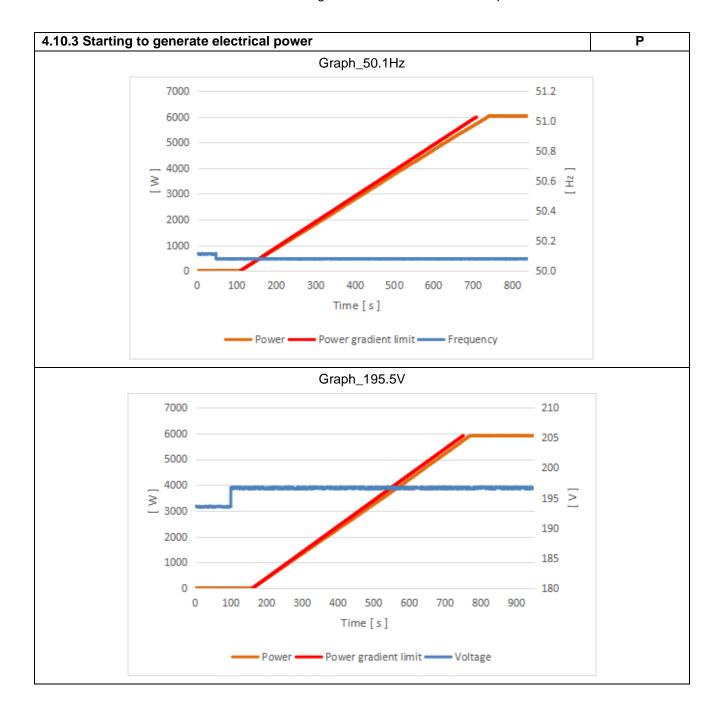




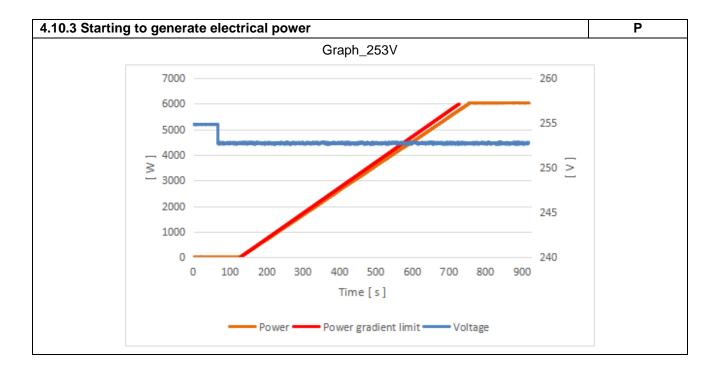





| 4.10.3 Start | 10.3 Starting to generate electrical power |                            |                      |  |  |  |
|--------------|--------------------------------------------|----------------------------|----------------------|--|--|--|
|              | Parameter                                  | Range                      | Default setting      |  |  |  |
|              | Lower frequency                            | 47,0Hz – 50,0Hz            | 49,5Hz               |  |  |  |
|              | Upper frequency                            | 50,0Hz - 52,0Hz            | 50,1Hz               |  |  |  |
|              | Lower voltage                              | 50% – 100% U <sub>n</sub>  | 85 % Un              |  |  |  |
|              | Upper voltage                              | 100% – 120% U <sub>n</sub> | 110 % U <sub>n</sub> |  |  |  |
|              | Observation time                           | 10s - 600s                 | 60s                  |  |  |  |
|              | Active power increase gradient             | 6% – 3000%/min             | disabled             |  |  |  |


Test result:

| Test sequence at normal operation starting | connection | connection<br>allowed | Observation time (s) | Power<br>gradient after<br>Connection<br>(%/min) |  |  |
|--------------------------------------------|------------|-----------------------|----------------------|--------------------------------------------------|--|--|
| Step a)                                    | <49.5Hz    | No                    |                      |                                                  |  |  |
| Step b)                                    | ≥49.5Hz    | Yes                   | 61.0                 | 9.57                                             |  |  |
| Step c)                                    | >50.1Hz    | No                    |                      |                                                  |  |  |
| Step d)                                    | ≤50.1Hz    | Yes                   | 61.0                 | 9.54                                             |  |  |
| Step e)                                    | <195.5V    | No                    |                      |                                                  |  |  |
| Step f)                                    | ≥195.5V    | Yes                   | 61.0                 | 9.78                                             |  |  |
| Step g)                                    | >253V      | No                    |                      |                                                  |  |  |
| Step h)                                    | ≤253V      | Yes                   | 61.0                 | 9.62                                             |  |  |


Remark: Tested at default setting.













|                   |                                                       |                  | power (Logic interface)                                |                                  |
|-------------------|-------------------------------------------------------|------------------|--------------------------------------------------------|----------------------------------|
| String 1 I        | J <sub>DC</sub> =                                     | 360 Vdc Uac = Un | 230 Vac P <sub>Emax</sub>                              |                                  |
| 1 min mean valu   | e P/Pn setpoint (%)                                   | Pmeasured (%)    | △Pmeasured (%)                                         | Limit<br>[%]                     |
| 1                 | 00%                                                   | 100.10%          | 0.10%                                                  | ±5%                              |
| 9                 | 90%                                                   | 90.24%           | 0.24%                                                  | ±5%                              |
| }                 | 30%                                                   | 80.23%           | 0.23%                                                  | ±5%                              |
| 7                 | 70%                                                   | 70.27%           | 0.27%                                                  | ±5%                              |
| (                 | 60%                                                   | 60.14%           | 0.14%                                                  | ±5%                              |
| Ę                 | 50%                                                   | 50.15%           | 0.15%                                                  | ±5%                              |
| 4                 | 10%                                                   | 40.32%           | 0.32%                                                  | ±5%                              |
|                   | 30%                                                   | 30.27%           | 0.27%                                                  | ±5%                              |
|                   | 20%                                                   | 20.39%           | 0.39%                                                  | ±5%                              |
|                   | 10%                                                   | 10.42%           | 0.42%                                                  | ±5%                              |
|                   | 0%                                                    | 0.29%            | 0.29%                                                  | ±5%                              |
| The power gradien | t for increasing and red<br>face (at input port) acti | lucing (%Pn/s)   |                                                        | 0.42%P <sub>n</sub> /s<br>0.411s |
|                   | 60.00%<br>40.00%<br>20.00%<br>0 200                   | Time [s]         | 00 1000 1200                                           |                                  |
| Tek               | PreVu                                                 | M 2.00 s         |                                                        |                                  |
| 3 Z               | 00m Factor: 20 X Zoom Po                              | 2 100ms 250      | 1.0132 s 5.366 V 1.4244 s 5.463 V 2.411.20ms 2.96.88mV |                                  |



| 4.13 | TABLE                   | : Single fault | tolerance                                                 | _            | Р                                                                                    |
|------|-------------------------|----------------|-----------------------------------------------------------|--------------|--------------------------------------------------------------------------------------|
| No   | Fault                   | Componen t No. | Fault point                                               | Duratio<br>n | Result                                                                               |
| 1.   | ISO Relay               | ALFG1          | Short circuit before start up inverter                    | 3min         | Unit can't operate, EM: Iso Fault.<br>no danger, no hazard, no fire                  |
| 2.   | Monitoring<br>Relay - L | K1             | Pin3 to Pin4<br>short circuit before<br>start up inverter | 3min         | Unit can't operate, EM: GridRelay Fault.<br>no danger, no hazard, no fire            |
| 3.   | Monitoring<br>Relay - L | K1             | Pin3 to Pin4<br>open circuit before<br>start up inverter  | 3min         | Unit can't operate, EM: GridRelay Fault.<br>no danger, no hazard, no fire            |
| 4.   | Monitoring<br>Relay - N | К3             | Pin3 to Pin4<br>short circuit before<br>start up inverter | 3min         | Unit can't operate, EM: GridRelay Fault.<br>no danger, no hazard, no fire            |
| 5.   | Monitoring<br>Relay - N | К3             | Pin3 to Pin4<br>open circuit before<br>start up inverter  | 3min         | Unit can't operate, EM: GridRelay Fault.<br>no danger, no hazard, no fire            |
| 6.   | AC voltage measure1     | D4             | Pin2-Pin3<br>Short circuit                                | 3min         | Unit shut down, EM: GridOverVolt Fault. no danger, no hazard, no fire                |
| 7.   | AC voltage<br>measure1  | D4             | Pin1-Pin3<br>Short circuit                                | 3min         | Unit shut down, EM: GridOverVolt Fault. no danger, no hazard, no fire                |
| 8.   | AC voltage<br>measure2  | D10            | Pin1-Pin3<br>Short circuit                                | 3min         | Unit can't operate, EM: PSInvHighVoltFault. No damage, no hazard, no fire            |
| 9.   | AC voltage<br>measure2  | D10            | Pin2-Pin3<br>Short circuit                                | 3min         | Unit can't operate, EM:<br>PSInvHighVoltFault.<br>No damage, no hazard, no fire      |
| 10.  | AC current measure1     | D19            | Pin1-Pin3<br>Short circuit                                | 3min         | Unit can't operate, EM:<br>RInvCurAdChaFault.<br>No damage, no hazard, no fire.      |
| 11.  | AC current measure1     | D19            | Pin2-Pin3<br>Short circuit                                | 3min         | Unit can't operate, EM:<br>RInvCurAdChaFault.<br>No damage, no hazard, no fire.      |
| 12.  | AC current measure2     | D20            | Pin1-Pin3<br>Short circuit                                | 3min         | Unit can't operate, EM:<br>SInvCurAdChaFault.<br>No damage, no hazard, no fire.      |
| 13.  | AC current<br>measure2  | D20            | Pin2-Pin3<br>Short circuit                                | 3min         | Unit can't operate, EM:<br>SInvCurAdChaFault.<br>No damage, no hazard, no fire.      |
| 14.  | AC current measure3     | D22            | Pin2-Pin3<br>Short circuit                                | 3min         | Unit can't operate, EM:<br>RUPSInstCurrHighFault.<br>No damage, no hazard, no fire.  |
| 15.  | AC frequency measure    | R255           | Pin1-Pin2<br>Short circuit                                | 3min         | Unit shut down, EM: GridOverFreq Fault. No damage, no hazard, no fire                |
| 16.  | V-bus<br>measure        | D31            | Pin2-Pin3<br>Short circuit                                | 3min         | Unit can't operate, EM: BusAllVoltHwOveFault. No damage, no hazard, no fire.         |
| 17.  | DC current measure1     | R247           | Pin1-Pin2<br>Short circuit                                | 3min         | Unit shut down, EM: Pv1HwOverCurrFault. no danger, no hazard, no fire                |
| 18.  | DC current measure2     | R248           | Pin1-Pin2<br>Short circuit                                | 3min         | Unit shut down, EM: Pv2HwOverCurrFault.<br>no danger, no hazard, no fire             |
| 19.  | DC current measure3     | R273           | Pin1-Pin2<br>Short circuit                                | 3min         | Unit shut down, EM: Pv3HwOverCurrFault. no danger, no hazard, no fire                |
| 20.  | T measure               | R180           | Pin1-Pin2<br>Short circuit                                | 3min         | Unit can't operate, EM:<br>TemperatureAdChanFault.<br>No damage, no hazard, no fire. |
| 21.  | power tube<br>Boost     | Q2             | Pin2-Pin3<br>Short circuit before<br>start up             | 3min         | Unit can not start up, No damage, no hazard, no fire.                                |

Page 93 of 98

| 4.13                                                          | TABLE                                             | : Single fault  | t tolerance                                   |            | P                                                                        |  |  |
|---------------------------------------------------------------|---------------------------------------------------|-----------------|-----------------------------------------------|------------|--------------------------------------------------------------------------|--|--|
| 22.                                                           | Diode                                             | D2              | Short circuit                                 | 3min       | Unit normal operation, No danger, no hazard, no fire                     |  |  |
| 23.                                                           | power tube<br>IGBT                                | QA5             | Pin2-Pin3<br>Short circuit before<br>start up | 3min       | Unit can't operate, EM: InvOpenTestErr.<br>No danger, no hazard, no fire |  |  |
| 24.                                                           | power tube<br>IGBT                                | QA6             | Pin2-Pin3<br>Short circuit before<br>start up | 3min       | Unit shut down, EM: InvOpenTestErr.<br>No damage, no hazard, no fire     |  |  |
| 25.                                                           | GFCI check                                        |                 | Short circuit                                 | 3min       | Unit shut down, EM: LeakCurrFault. No damage, no hazard, no fire         |  |  |
| 26.                                                           | Bus cap                                           | C208            | Pin1-Pin2<br>Short circuit before<br>start up | 3min       | Unit can not start up, No damage, no hazard, no fire.                    |  |  |
| 4.4.4                                                         | 4.4 Transforme                                    | r short circuit | tests                                         |            |                                                                          |  |  |
| 27.                                                           | Transformer<br>short circuit<br>tests             | T4              | Pin22-Pin24<br>Short circuit                  | 10min      | Unit can not start up, No damage, no hazard, no fire.                    |  |  |
| 28.                                                           | Transformer short circuit tests                   | T4              | Pin32-Pin36<br>Short circuit                  | 10min      | Unit can not start up, No damage, no hazard, no fire.                    |  |  |
| 29.                                                           | power tube<br>MOS-SPS                             | Q-MOS1          | G-D<br>Short circuit                          | 10min      | SPS no output, no danger, no hazard, no fire                             |  |  |
| 30.                                                           | power tube<br>MOS-SPS                             | Q-MOS1          | D-S<br>Short circuit                          | 10min      | SPS no output,<br>no danger, no hazard, no fire                          |  |  |
| 4.4.4                                                         | 4.5 Output short                                  | circuit         |                                               | T          |                                                                          |  |  |
| 31.                                                           | Output L to N                                     |                 | short circuit                                 | 3min       | Unit shut down, EM: GridUnderVoltFault. No damage, no hazard, no fire    |  |  |
| 32.                                                           | Output L to<br>PE                                 |                 | short circuit                                 | 3min       | Unit shut down, EM: GridLossFault. No damage, no hazard, no fire         |  |  |
| 4.4.4                                                         | 4.6 Backfeed cu                                   | rrent test for  | equipment with more that                      | an one sou | rce of supply                                                            |  |  |
| 33.                                                           | DC                                                |                 |                                               | 10min      | Vac=0, V <sub>BAT</sub> =0                                               |  |  |
| 34.                                                           | AC                                                |                 |                                               | 10min      | Vdc=0, V <sub>BAT</sub> =0                                               |  |  |
| 35.                                                           | BAT                                               | ŀ               |                                               | 10min      | Vdc=0, Vac=0                                                             |  |  |
| 36.                                                           | BAT                                               |                 |                                               | 10min      | Vdc=0, Vac=0                                                             |  |  |
| 4.4.4.7 Output overload                                       |                                                   |                 |                                               |            |                                                                          |  |  |
| 37.                                                           | Overload                                          |                 | Output overload<br>(110%)                     | 30 min     | Unit normal operation,<br>No damage, no hazard, no fire                  |  |  |
| 4.4.4.8 cooling system failure test                           |                                                   |                 |                                               |            |                                                                          |  |  |
| 38.                                                           | Cooling<br>system failure<br>– Blanketing<br>test |                 | Put the unit to box                           | 2Hour      | 1 hour power run at 50%                                                  |  |  |
| 4.4.4.11 Reverse d.c. connections                             |                                                   |                 |                                               |            |                                                                          |  |  |
| 39.                                                           | PV+ to PV-                                        |                 | Reverse polarity                              | 3min       | Unit can not start up,<br>no danger, no hazard, no fire                  |  |  |
| 4.4.4.13 Mis-wiring with incorrect phase sequence or polarity |                                                   |                 |                                               |            |                                                                          |  |  |
| 40.                                                           | Output L - N                                      |                 | Reverse polarity before start up              | 3min       | Unit normal operation.<br>No damage, no hazard, no fire.                 |  |  |



#### 4.13 TABLE: Single fault tolerance P

Page 94 of 98

#### Remarks:

**Abbreviations** 

APS: auxiliary power supply, EM: error message,

EUT: equipment under test, SC short circuit, OP: open circuit, O/L: Overloaded

EUT shut down: EUT not connect to Grid, cease to export power to Grid, the relay is opened.

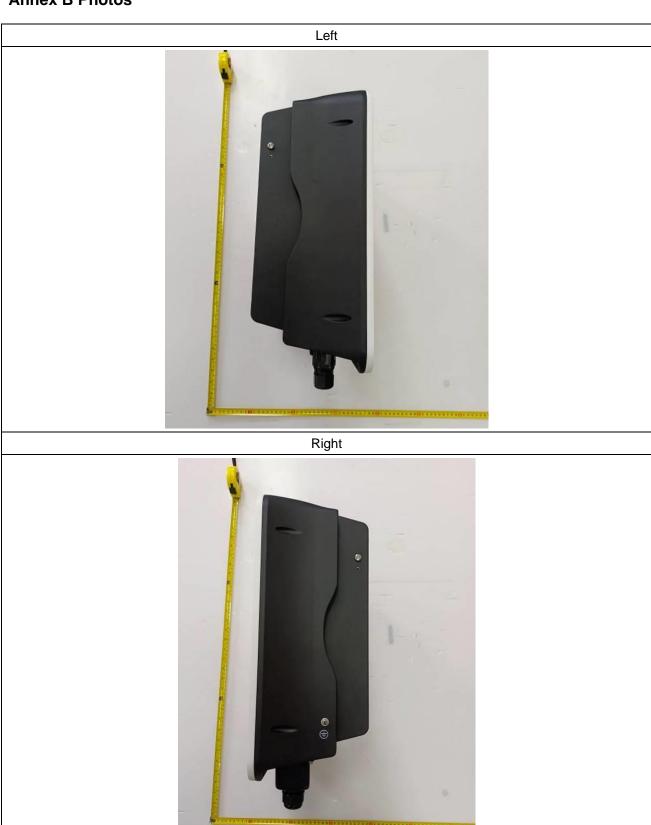
EUT standby: EUT connect to Grid, cease to export power to Grid, the relay is closed.

During the test:

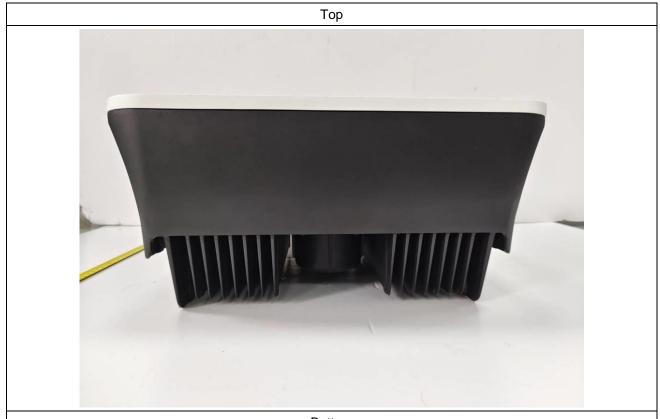
Fire can not propagate beyond the EUT.

Equipment shall not emitt molten metal.

Enclosures shall not deform to cause non-compliance with the standard.


Dielectric test is made on RI and BI between Pri. circuit and protective earthing terminal after the test.

No Backfeed voltage on the test














Page 97 of 98









Page 98 of 98