

TEST REPORT

EN 50549-1:2019/AC:2019

TUV SUD Test Report for Requirements for generating plants to be connected in parallel with distribution networks - Part 1: Connection to a LV distribution network - Generating plants up to and including Type B

Report No.:	64.290.22.31030.01
Date of issue:	2022-09-14
Project handler:	Jenn Huang
Testing laboratory:	TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou
Address:	Branch TÜV SÜD Testing Center, D1 building, No. 63 Chuangqi Road, Shilou Town, Panyu District, Guangzhou 511447, China
Testing location:	as above
Client:	V-TAC EXPORTS LIMITED
Client number:	091428
Address:	Room No.301, KAM on Building 176A Queens Road, Central, Hong Kong, HONG KONG
Contact person:	Anson Bao
Standard:	This TUV SUD test report form is based on the following requirements: EN 50549-1:2019/AC:2019
TRF number and revision:	TRF EN 50549-1:2019/AC:2019 rev.0/2019-04
TRF originated by:	TUV SUD Product Service, Mr. Billy Qiu
Copyright blank test report:	This test report is based on the content of the standard (see above). The test report considered selected clauses of the a.m. standard(s) and experience gained with product testing. It was prepared by TUV SUD Product Service. TUV SUD Group takes no responsibility for and will not assume liability for damages
	resulting from the reader's interpretation of the reproduced material due to its placement and context.
General disclaimer:	This test report may only be quoted in full. Any use for advertising purposes must be granted in writing. This report is the result of a single examination of the object in question and is not generally applicable evaluation of the quality of other products in regular production.
Scheme:	☐ GS Mark ☐ NRTL Mark ☐ EU-Directive ☐ TUV Mark ☐ Type verification of conformity
Non-standard test method:	No
National deviations:	N/A
Number of pages (Report):	93
Number of pages (Attachments):	N/A
· -	
Compiled by:	Jenn Huang (Printed Name and Signature) Iris Zheng (Printed Name and Signature)
Approved by:	Iris Zheng (Printed Name and Signature)
	(Filineu Ivaine and Signature)

TRF No. EN 50549-1:2019 Project No: 64.290.22.31030.01

Rev.: 00 Date: 2022-09-14 Page: 1 of 93 Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

Test sample:	Solar Inverter
Type of test object:	Solar Inverter
Trademark:	V-T ▲C°
Model and/or type reference:	VT-6605310, VT-6608310, VT-6610310, VT-6615310
Rating(s):	See page 8
Manufacturer:	Same as applicant
Manufacturer number:	Same as applicant
Address:	Same as applicant
Sub-contractors/ tests (clause):	
Name:	
	☐ Complete test according to TRF
	Partial test according to manufacturer's specifications
Order description:	☐ Preliminary test
	☐ Spot check
	Others:
Date of order:	2022-04-12, 2022-07-15
Date of receipt of test item:	2022-05-13, 2022-08-15
Date(s) of performance of test:	2022-05-14 to 2022-07-15, 2022-08-15 to 2022-09-09

Page: 2 of 93

Telephone : +86 20 3832 0668 Telefax : +86 20 3832 0478

Test item particulars:				
Equipn	nent mobility:	☐ movable☐ hand-held☒ stationary☒ fixed☐ transportable☐ for building-in		
Conne	ction to the mains:	☐ pluggable equipment ☐ direct plug-in ☐ for building-in		
Enviro	mental category:			
Over v	oltage category Mains:			
Over v	oltage category PV:			
Mains	supply tolerance (%):	+/- 10%		
Tested	for power systems:	TN system		
IT testi	ng, phase-phase voltage (V):	N/A		
Class	of equipment:			
Mass o	of equipment (kg):	VT-6605310: 12kg,		
		VT-6608310, VT-6610310, VT-6615310: 13.5kg		
Pollutio	on degree:	PD 3(External), PD 2(Internal)		
IP prot	ection class:			
Gene	General product information:			
(1) All the models are three phase non-isolated type multi-functions Solar Inverter which will be installed and connected to the grid network or standalone after installation. The unit is defined as type A generator according to Regulation (EU) 2016/631 (NC RfG)				
(2)	hardware or software setting (if a	tted by local regulation, the function shall be disabled by applicable) by the manufacturer before putting into the market. It to draw electricity from the grid and then feed it back in order t in some nations;		
(3)	Low voltage electrical installation electricians are allowed to install	ns shall comply with national and local regulation. Only qualified I and maintain the converter;		
(4)		ser and installer, external DC and AC circuit breaker shall be tery, AC grid) at the end-use application.		
(5)	The unit has below reactive powregulation: 1) Q setpoint mode 2) Q(U) mode 3) Cos φ setpoint mode 4) Cos φ (P)	er control modes, shall comply with national and local		
(6)	RS 485-1 communication port is	provide for remoted control		
(7)	Software version: GAAA1.0			

Page: 3 of 93

Telephone : +86 20 3832 0668 Telefax : +86 20 3832 0478

Model differences:

The differences among 3 categories in the same series:

Component	VT-6605310	VT-6608310, VT-6610310	VT-6615310
Appearance	No external fan	No external fan	With external fan
board	_	_	Stacking a bus capacitor board:50uF/600Vdc*2P CS
Component Differences	Boost sensors: 20A(STK-20PL)*2PCS; Boost Inductor: 1.4mH/15A*2PCS; DC Link Capacitor: 110uF/550Vdc*2PCS; AC Filter Capacitor: 4.7uF/350Vac*2PCS; Inverter Inductor: 2mH/10A*3PCS; Inverter sensors: 10A(STK-10PL)*3PCS	Boost sensors: 20A(STK-20PL)*2PCS; Boost Inductor: 1.4mH/15A*2PCS; DC Link Capacitor: 140uF/550Vdc*2PCS; AC Filter Capacitor: 8uF/350Vac*2PCS; Inverter Inductor: 0.787mH/20A*3PCS; Inverter sensors: 20A(STK-20PL)*3PCS	Boost sensors: 20A(STK-20PL)*2PCS; Boost Inductor1.4mH/15A*1P CS+0.7mH/30A*1PCS; DC Link Capacitor: 140uF/550Vdc*2PCS+ 50uF/600Vdc*2PCS; AC Filter Capacitor: 8uF/350Vac*2PCS; Inverter Inductor: 0.787mH/20A*3PCS; Inverter sensors: 32A(STK-32PL)*3PCS

Attachments: N/A

General remarks:

Throughout this report a point is used as the decimal separator.

The test results presented in this report relate only to the object tested.

This report shall not be reproduced except in full without the written approval of the testing laboratory.

Summary of testing:

The test was performed according to EN 50549-1:2019/AC:2019 for assessment of comformity of RfG European Network Code (RfG 2016/631) as generator type A.

[&]quot;(see remark #)" refers to a remark appended to the report.

[&]quot;(see appended table)" refers to a table appended to the report.

Clause	formed (name of test and test clause): Requirement + Test
4.3	Choice of switchgear
4.4.2	Operating frequency range
4.4.3	Minimal requirement for active power delivery at underfrequencies
4.4.4	Continuous operating voltage range
4.5.2	Rate of change of frequency (ROCOF) immunity
4.6.1	Power response to overfrequency
4.7.2.2	Capabilities
4.7.2.3.2	Setpoint control modes
4.7.2.3.3	Voltage related control modes
4.7.2.3.4	Power related Control mode
4.7.3	Voltage related active power reduction
4.8	Power quality
4.9.3.2	Undervoltage protection
4.9.3.3	Overvoltage protection
4.9.3.4	Overvoltage 10 min mean protection
4.9.3.5	Underfrequency protection
4.9.3.6	Overfrequency protection
4.9.4.2	Active methods tested with a resonant circuit
4.10.2	Automatic reconnection after tripping
4.10.3	Starting to generate electrical power
4.11.1	Ceasing active power
4.11.2	Reduction of active power on set point
Remark: If	no special indicates, all the test is applied for model: VT-66153
	on(s) found ations found
Additiona	I information on Non-standard test method(s)
Sub clause	e: N/A
Page:	N/A
Rational:	N/A

TRF No. EN 50549-1:2019 Project No: 64.290.22.31030.01 Rev.: 00 Date: 2022-09-14

Page: 5 of 93

Telephone : +86 20 3832 0668 Telefax : +86 20 3832 0478

http://www.tuv-sud.cn

Copy of marking plate:

	ON-GRID SOLAR INVERTER	
	VT-6605310	
DC Input	SKU: 11381	
Vmax. PV	1100V	
MPPT Range	180V-1000V	
Max. Current	14A/14A	
Isc PV	18A/18A	
AC Output		
Nominal Voltage	3/N/PE,230V/400V	
Max. Current	8A	
Rated Power	5000W	
Max. Output Power	5500VA	
Frequency	50Hz/60Hz	
Power factor range	0.80un∽ 0.80ov	
Environment		
Temperature	-25℃ ~ +60℃	
Protective Class	I	
Inverter topology	Non-isolated	
Ingress protection WARNING:	IP66	

V -T▲C®	ON-GRID SOLAR INVERTER
	VT-6608310
DC Input	SKU: 11382
Vmax. PV	1100V
MPPT Range	180V-1000V
Max. Current	14A/14A
Isc PV	18A/18A
AC Output	
Nominal Voltage	3/N/PE,230V/400V
Max. Current	12.8A
Rated Power	8000W
Max. Output Power	8800VA
Frequency	50Hz/60Hz
Power factor range	0.80un~ 0.80ov
Environment	
Temperature	-25℃ ~ +60℃
Protective Class	I
Inverter topology	Non-isolated
Ingress protection WARNING:	IP66
	ould Install or perform maintenance

ONLY qualified personnel should Install or perform maintenance

work on these modules.

D O NOT damage or scratch the rear surface of the modules..

BE AWARE of dangerous high DC voltage when connection modules.

V-TAC EXPORTS LIMITED

TRF No. EN 50549-1:2019 Project No: 64.290.22.31030.01

Rev.: 00 Date: 2022-09-14 Page: 6 of 93

Telephone: +86 20 3832 0668 Telefax : +86 20 3832 0478

V-T ▲C®	ON-GRID SOLAR INVERTER
	VT-6610310
DC Input	SKU: 11383
Vmax. PV	1100V
MPPT Range	180V-1000V
Max. Current	14A/14A
Isc PV	18A/18A
AC Output	
Nominal Voltage	3/N/PE,230V/400V
Max. Current	15.9A
Rated Power	10000W
Max. Output Power	11000VA
Frequency	50Hz/60Hz
Power factor range	0.80un~ 0.80ov
Environment	
<u>Temperature</u>	-25℃ ~ +60℃
Protective Class	I
Inverter topology	Non-isolated
Ingress protection	IP66
work on these modules. D O NOT damage or scratch to	buld Install or perform maintenance the rear surface of the modules h DC voltage when connection modules.
0 \$ 20 CE	MADE IN CHINA ROHS
V-TAC EXPORTS LIMITED	······
:	

▼-T ▲ C ®	ON-GRID SOLAR INVERTER
	VT-6615310
DC Input	
Vmax. PV	1100V
MPPT Range	180V-1000V
Max. Current	18A/18A
Isc PV	25A/25A
AC Output	
Nominal Voltage	3/N/PE,230V/400V
Max. Current	23.9A
Rated Power	15000W
Max. Output Power	16500VA
Frequency	50Hz/60Hz
Power factor range	0.80un
Environment	
Temperature	-30°C ~ +60°C
Protective Class	I
Inverter topology	Non-isolated
Ingress protection	IP66
work on these modules. D O NOT damage or scratch t	buld Install or perform maintenance the rear surface of the modules th DC voltage when connection modules.
0 13 20 CE	MADE IN CHINA ROHS
V-TAC EXPORTS LIMITED	

Remark: For application of this standard, the nominal voltage is 230/400 Va.c., nominal frequency is 50Hz, and the power factor range: 0.9 leading to 0.9 lagging

TRF No. EN 50549-1:2019 Project No: 64.290.22.31030.01

Rev.: 00 Date: 2022-09-14 Page: 7 of 93 Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

O L	- 4 4	
Chara	cteristic	· data·

maracteristic data.				
Model:	VT-6605310	VT-6608310	VT-6610310	VT-6615310
PV input terminal parameters:				
Maximum input voltage		110	0Vd.c.	
PV input operating voltage range		180-1	000Vd.c.	
MPPT voltage range(Full load)	250-850Vd.c.	320-850Vd.c.	450-85	50Vd.c.
Maximum operating PV input current		14/14Ad.c.		
Maximum PV short circuit current	18/18Ad.c. 25/25Ad.c.			25/25Ad.c.
AC output rating				
Rated output voltage	3/N/PE,230/400Va.c.			
Rated output frequency	50Hz			
Maximum continuous output current	8Aa.c.	12.8Aa.c.	15.9Aa.c.	23.9Aa.c.
Rated output active power	5kW	8kW	10kW	15kW
Maximum continuous output apparent power SEmax	5.5kVA	8.8kVA	11kVA	16.5kVA
Power factor	ctor 0.9 leading ~ 0.9 lagging			

Page: 8 of 93

Picture of the product:

Over view (alternative LED cover board)

Terminal view (VT-6615310)

Terminal view (VT-6605310, VT-6608310, VT-6610310)

Page: 9 of 93

Inside view (VT-6605310, VT-6608310, VT-6610310)

Name and address of factory (ies) (only if certification is provided):

Shenzhen INVT Electric Co., Ltd. (Baoan Factory)

4th to 1st floors of Emerson Industrial Park, No. 3, Fengtang Avenue, Tangwei Community, Fuhai Street, Baoan District, Shenzhen

Possible test case verdicts:

test case does not apply to the test object: N/A (not applicable / not included in the order)

test object does meet the requirement: P (Pass) test object does not meet the requirement: F (Fail)

Possible suffixes to the verdicts:

suffix for detailed information for the client: C (Comment) suffix for important information for factory M (Manufacturing)

inspection:

TRF No. EN 50549-1:2019 Project No: 64.290.22.31030.01

Rev.: 00 Date: 2022-09-14 Page: 10 of 93 Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

http://www.tuv-sud.cn

Clause	Requirement + Test	esult – Remark	Verdi
4	Requirements on generating plants		Р
4.1	General		Р
	This clause defines the requirements on generating plants to be operated in parallel with the distribution network. Where settings or a range of configurabilit provided and respecting the legal framework the configurations and settings may be provided by the DSO. Where no settings are provided by the DSO, specified default settings shall be used; if no defaul settings are provided, the producer shall propose settings and inform the DSO.	r is considerd.	C:2019 is
	The requirements of Clause 4 apply during normal operation of the generating units and do not apply i case of maintenance or units out of operation. The provisions apply to EESS in generation mode. In charging mode EESS should have the same characteristics, unless stated otherwise in the claus of this European Standard.		P
	The applicability is independent of the duration the generating unit operates in parallel with the distribu network. It is the responsibility of the DSO to relax, deemed appropriate, the requirements for an individual generating unit or plant whose operation parallel only lasts for a short time (temporary opera in parallel). The relaxed requirements shall be agre between the DSO and the producer, along with the maximum allowable duration of the temporary operation in parallel. For the short-term parallel operation an appropriate device shall automatically disconnect the generating unit or plant as soon as t maximum allowable duration has elapsed.	f n ion ed	P
	If different requirements on the generating plant interfere with each other, the following hierarchy in descending order shall be applied: 1. Generating unit protection, including regarding the prime mover; 2. interface protection (see 4.9) and protection again faults within the generating plant; 3. voltage support during faults and voltage steps (standard); 4. the lower value of: remote control command on active power limitation for distribution grid security (see 4.11) and local response to overfrequency (sea 4.6.1); 5. local response to underfrequency if applicable (standard);	ee e	

Clause	Requirement + Test	resul	t – Remark	Verdict
	6. reactive power (see 4.7.2) and active power (P(t see 4.7.2) controls; 7. other control commands on active power set poi for e.g. market, economic reasons, self-consumption optimization.	nt		
	The system shall be so designed that under foreseeable conditions no self-protection trips prior the fulfilment of the requirements of this European Standard and all settings provided by the DSO or responsible party.	to	Designed according to Regulation (EU) 2016/631, article Type A	Р
	For cogeneration plants embedded in industrial site active power requirements shall be agreed betwee the responsible party and the producer. In such a country the priority list is adapted accordingly.	n		N/A
	Besides the requirements of Clause 4, additional requirements apply for connecting a generating pla to the distribution network, e.g. assessment of the point of connection. However, this is excluded from scope of this European Standard but some guidance is provided in the informative Annex A.	the	Consider in final installatio.	Р
4.2	Connection scheme			Р
	The connection scheme of the generating plant shabe in compliance with the requirements of the DSC Different requirements may be subject to agreement between the producer and the DSO depending on power system needs.). nt		Р
	Inter alia, the generating plant shall ensure the follo	ow		Р
	synchronization, operation and disconnection und normal network operating conditions, i.e. in the absence of faults or malfunctions;	der		Р
	 faults and malfunctions within the generating plar shall not impair the normal functioning of the distribution network; 	nt		Р
	coordinated operation of the interface switch with generating unit switch, the main switch and switche the distribution network, for faults or malfunctions within the generating plant or the DSO network dur operation in parallel with the distribution network; a	es in ing	Approved relay used	Р
	disconnection of the generating plant from the distribution network by tripping the interface switch according to 4.9.			Р
	In order to satisfy the above functions, coordinated independent switches and protection equipment makes applied in the generating plant, as shown in the example in Figure 2.			Р

Page: 12 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

Clause	Requirement + Test	result – Remark	Verdict
4.3	Choice of switchgear		Р
4.3.1	General		P
	Switches shall be chosen based on the characterist of the power system in which they are intended to be installed. For this purpose, the short circuit current the installation point shall be assessed, taking into account, inter alia, the short circuit current contribution of the generating plant.	be 64.290.22.30405.01 at	P
4.3.2	Interface switch	Refer to safety report: 64.290.22.30405.01	Р
	Switches shall be power relays, contactors or mechanical circuit breakers each having a breaking and making capacity corresponding to the rated current of the generating plant and corresponding to the short circuit contribution of the generating plant	0	Р
	The short-time withstand current of the switching devices shall be coordinated with rated short circuit power at the point of connection.		Р
	In case of loss of auxiliary supply power to the switchgear, a secure disconnection of the switch is required immediately.		Р
	Where means of isolation (according to HD 60364-551) is not required to be accessible to the DSO at times, automatic disconnection with single fault tolerance according to 4.13 shall be provided.		Р
	NOTE 1 For PV-inverters, further requirements are stated EN 62109–1 and EN 62109–2 with respect to the interfact switch.		
	The function of the interface switch might be combi with either the main switch or the generating unit switch in a single switching device. In case of a combination, the single switching device shall be compliant to the requirements of both, the interface switch and the combined main switch or generating unit switch. As a consequence, at least two switches series shall be present between any generating unit and the POC.	J es in	Р
	NOTE 2 This does not refer to the number of series- connected switches in order to ensure single fault tolerar as required in 4.13 but to the number of different switchir devices itself.		
4.4	Normal operating range		Р
4.4.1	General		Р
	Generating plants when generating power shall have the capability to operate in the operating ranges	/e	Р

Page: 13 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

http://www.tuv-sud.cn

Clause	Requirement + Test	result – Remark	Verdict
	specified below regardless the topology and the settings of the interface protection.		
4.4.2	Operating frequency range	see below table	Р
	The generating plant shall be capable to operate continuously when the frequency at the point of connection stays within the range of 49 Hz to 51 Hz.		Р
	In the frequency range from 47 Hz to 52 Hz the generating plant should be capable of operating until the interface protection trips. Therefore, the generating plant shall at least be capable of operating in the frequency ranges, for the duration and for the minimum requirement as indicated in Table 1.		P
	Respecting the legal framework, it is possible that for some synchronous areas more stringent time period and/or frequency ranges will be required by the DSC and the responsible party. Nevertheless, they are expected to be within the boundaries of the stringen requirement as indicated in Table 1 unless producer DSO, TSO and responsible party agree on wider frequency ranges and longer durations. NOTE 1 For small isolated distribution networks (typically islands) even more stringent time periods and frequency ranges may be required.	ds D t T,	P
	As long as generating modules with linear Sterling engines are recognized as emerging technology according to COMMISSION REGULATION (EU) 2016/631 Title 6, they are permitted to disconnect below 49,5 Hz and above 50,5 Hz.		N/A
	This permission does not affect the requirements for interface protection according to clause 4.9. In this case over and under frequency machine protection might trip prior to interface protection. If an integrate interface protection device is used, the reduction of configuration range of the interface protection in clause 4.9 is acceptable.	d	P
	NOTE 2: The status of emerging technology in COMMISSION REGULATION (EU) 2016/631 Title 6 depends on the cumulative maximum capacity of this technology. Once the threshold in cumulative maximum capacity is reached the status will be withdrawn		
4.4.3	Minimal requirement for active power delivery at underfrequencies	See below table	Р
	A generating plant shall be resilient to reductions of frequency at the point of connection while reducing to maximum active power as little as possible.		Р

Page: 14 of 93

Clause	Requirement + Test	result – Remark	Verdict
	The admissible active power reduction due to underfrequency is limited by the full line in Figure 5 and is characterized by a maximum allowed reduction ra of 10 % of Pmax per 1 Hz for frequencies below 49		Р
	Hz. It is possible that a more stringent power reduction characteristic is required by the responsible party. Nevertheless this requirement is expected to be limited to an admissible active power reduction represented by the dotted line in Figure 5 which is characterised by a reduction rate of 2 % of the maximum power Pmax per 1 Hz for frequencies bel 49 Hz.	low	P
	If any technologies intrinsic design or ambient conditions have influence on the power reduction behaviour of the system, the manufacturer shall specify at which ambient conditions the requirement can be fulfilled and eventual limitations. The information can be provided in the format of a graph showing the intrinsic behaviour of the generating unfor example at different ambient conditions. The power reduction and the ambient conditions shall comply the specification given by the responsible party. If the generating unit does not meet the power reduction the specified ambient conditions, the producer and responsible party shall agree on acceptable ambient conditions.	n nit wer with ne at the	P
4.4.4	Continuous operating voltage range	See below table	Р
	When generating power, the generating plant shall capable of operating continuously when the voltage the point of connection stays within the range of 85 Un to 110 % Un. Beyond these values the under an over voltage ride through immunity limits as specific in clause 4.5.3 and 4.5.4 shall apply.	e at	Р
	In case of voltages below Un, it is allowed to reduce the apparent power to maintain the current limits of generating plant. The reduction shall be as small as technically feasible.	the	Р
	For this requirement all phase to phase voltages and in case a neutral is connected, additionally all phase neutral voltages shall be evaluated. NOTE The specified accepted reduction of output power an absolute minimum requirement. Further power system aspects might require maintained output power in the ent continuous operation voltage range.	e to	Р

TRF No. EN 50549-1:2019 Project No: 64.290.22.31030.01 Rev.: 00 Date: 2022-09-14

Page: 15 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

http://www.tuv-sud.cn

Clause	Requirement + Test re	sult – Remark	Verdict
	The producer shall take into account the typical voltage rise and voltage drop within the generating plant.		P
4.5	Immunity to disturbances		Р
4.5.1	General		Р
	In general, generating plants should contribute to overall power system stability by providing immunity towards dynamic voltage changes unless safety standards require a disconnection.		Р
	The following clauses describe the required immunity for generating plants taking into account the connection technology of the generating modules.		Р
	The following withstand capabilities shall be provided regardless of the settings of the interface protection. NOTE An event on the HV and EHV transmission network can affect numerous small scale units on MV and LV level. Depending on the penetration of dispersed generation, a significant loss of active power provision can be caused.		Р
4.5.2	Rate of change of frequency (ROCOF) immunity	See below table	Р
	ROCOF immunity of a power generating plant means that the generating modules in this plant stay connected with the distribution network and are able to operate when the frequency on the distribution network changes with a specified ROCOF. The generating units and all elements in the generating plant that might cause their disconnection or impact their behaviour shall have this same level of immunity	o	Р
	The generating modules in a generating plant shall have ROCOF immunity for a ROCOF equal or exceeding the value specified by the responsible party. If no ROCOF immunity value is specified, the following ROCOF immunity shall apply, making distinction between generating technologies: • Non-synchronous generating technology: at least 2 Hz/s • Synchronous generating technology: at least 1 Hz/s		Р
	The ROCOF immunity is defined with a sliding measurement window of 500 ms.		Р
4.5.3	Under-voltage ride through (UVRT)	Not suitable for Type A unit	N/A
4.5.3.1	General		N/A
	Generating modules classified as type B modules according to COMMISSION REGULATION 2016/631 shall comply with the requirements of 4.5.3.2 and		N/A

TRF No. EN 50549-1:2019 Project No: 64.290.22.31030.01 Rev.: 00 Date: 2022-09-14

Page: 16 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

http://www.tuv-sud.cn

Clause	Requirement + Test	result – Remark	Verdict
	4.5.3.3. Generating modules classified as type A a smaller according to COMMISSION REGULATION 2016/631 should comply with these requirements. actual behaviour of type A modules and smaller shoe specified in the connection agreement. NOTE 1 Based on the chosen banding threshold it is considered necessary to include generating modules classified as type A. Exemption is only acceptable for Cland generating units based on rotating machinery below kW as EN 50465 for gas appliance requests disconnect in case of under voltage.	The hall	
	The requirements apply to all kinds of faults (1ph, 2 and 3ph). NOTE 2 A more distinctive differentiation for 1ph, 2ph at 3ph faults is under consideration. NOTE 3 These requirements are independent of the interface protection settings. Disconnection settings of the interface protection relay always overrule technical capabilities. So, whether the generating plant will stay connected or not will also depend upon those settings. NOTE 4 The FRT curves in Figure 6, Figure 7 and Figure describe the minimum requirements for continued connection of the generating plant to the grid. They are designed for parameterising the interface protection.	nd ne re 8	N/A
4.5.3.2	Generating plant with non-synchronous generating technology	1	N/A
	Generating modules shall be capable of remaining connected to the distribution network as long as th voltage at the point of connection remains above the voltage-time curve of Figure 6. The voltage is related to Un. The smallest phase to neutral voltage, or if the neutral is present, the smallest phase to phase voltage is phase voltage.	e ne ive no	N/A
	The responsible party may define a different UVRT characteristic. Nevertheless, this requirement is expected to be limited to the most stringent curve indicated in Figure 6.		N/A
	This means that the whole generating module has comply with the UVRT requirement. This includes elements in a generating plant: the generating unit and all elements that might cause their disconnect	all s	N/A
	For the generating unit, this requirement is consider to be fulfilled if it stays connected to the distribution grid as long as the voltage at its terminals remains above the defined voltage-time diagram.	n	N/A
	After the voltage returns to continuous operating voltage range, 90 % of pre-fault power or available power whichever is the smallest shall be resumed		N/A

Page: 17 of 93

Clause	Requirement + Test	result – Remark	Verdict
	fast as possible, but at the latest within 1 s unless to DSO and the responsible party requires another variables.		
4.5.3.3	Generating plant with synchronous generating technology		N/A
	Generating modules shall be capable of staying connected to the distribution network as long as the voltage at the point of connection remains above the voltage-time curve of Figure 7. The voltage is related to Un. The smallest phase to neutral voltage or if no neutral is present the smallest phase to phase voltage shall be evaluated.	e /e)	N/A
	The responsible party may define a different UVRT characteristic. Nevertheless, this requirement is expected to be limited to the most stringent curve, indicated in Figure 7.		N/A
	This means that the whole generating module has comply with the UVRT requirement. This includes a elements in a generating plant: the generating unit and all elements that might cause its disconnection		N/A
	For the generating unit, this requirement is consider to be fulfilled if it stays connected to the distribution grid as long as the voltage at its terminals remains above the defined voltage-time diagram.	red	N/A
	After the voltage returns to continuous operating voltage range, 90 % of pre-fault power or available power whichever is the smallest shall be resumed fast as possible, but at the latest within 3 s unless to DSO and the responsible party requires another variable.	ne	N/A
4.5.4	Over-voltage ride through (OVRT)	Not suitable for Type unit	A N/A
	Generating modules, except for micro-generating plants, shall be capable of staying connected to the distribution network as long as the voltage at the post connection remains below the voltage-time curve Figure 8.	int	N/A
	The highest phase to neutral voltage or if no neutral present the highest phase to phase voltage shall be evaluated.		N/A
	This means that not only the generating units shall comply with this OVRT requirement but also all elements in a generating plant that might cause its disconnection. NOTE 1 Based on the chosen banding threshold it is		N/A
	considered necessary to include generating modules classified as type A. Exemption is only acceptable for CF and generating units based on rotating machinery below		

Page: 18 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

http://www.tuv-sud.cn

Clause	Requirement + Test	result – Remark	Verdict
	1		l
	kW as EN 50465 for gas appliance requests disconnection in case of over voltage.	on	
	NOTE 2 These requirements are independent of the interface protection settings. Disconnection settings of the interface protection relay will always overrule technical capabilities. So, whether the generating plant will stay connected or not will also depend upon those settings.	е	
	NOTE 3 This is a minimum requirement. Further power system stability aspects might be relevant. The technical discussion is still ongoing. A voltage jump of +10 % of Ur from any stable point of operation is considered. In case steady state voltages near the maximum voltage before t event, this will result in an over voltage situation for many seconds. In later editions of this document, more stringer immunity might be required.	of che	
4.6	Active response to frequency deviation		Р
4.6.1	Power response to overfrequency	See below table	Р
	Generating plants shall be capable of activating act power response to overfrequency at a programmab frequency threshold f ₁ at least between and includir 50,2 Hz and 52 Hz with a programmable droop in a range of at least s=2 % to s=12 %. The droop reference is P _{ref} . Unless defined differently by the responsible party:	ole ng	P
	• P _{ref} =P _{max} , in the case of synchronous generating technology and electrical energy storage systems.		
	• $P_{\text{ref}} = P_{\text{M}}$, the actual AC output power at the instar when the frequency reaches the threshold f 1 , in the case of all other non-synchronous generating technology		
	The power value calculated according to the droop maximum power limit. If e.g. the available primary power decreases during a high frequency period below the power defined by the droop function, low power values are permitted.		Р
	The maximum power limit is: $P_{max-limit} = P_M + \Delta P$		Р
	with $\Delta P = \frac{1}{s} \cdot \frac{(f_1 - f)}{f_n} \cdot P_{ref}$ with f the actual frequency		
	NOTE 1 In other documents power response to overfrequency can also be described as frequency control Limited Frequency Sensitive Mode - Overfrequency (LFS O).		
	NOTE 2 The active power droop relative to the reference power might also be defined as an active power gradient relative to the reference power. A droop in the range of 2 to 12 % represents a gradient of 100 % to 16,7 % Pref/Hz	%	

TRF No. EN 50549-1:2019 Project No: 64.290.22.31030.01 Rev.: 00 Date: 2022-09-14

Page: 19 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

http://www.tuv-sud.cn

Clause	Requirement + Test	result – Remark	ζ	Verdict
	with g defined by $g\left[\frac{P}{P_{ref}}/Hz\right] = \frac{1}{s \cdot f_n} \text{ we get } \Delta P = g \cdot P_{ref} \cdot (f_1 - f).$			
	The generating plant shall be capable of activating active power response to overfrequency as fast as technically feasible with an intrinsic dead time that shall be as short as possible with a maximum of 2 and with a step response time of maximum 30 s, unless another value is defined by the relevant par An intentional delay shall be programmable to adjute dead time to a value between the intrinsic dead time and 2 s. NOTE 3 The following response times are considered feasible, for PV and battery inverters below 1 s for ΔP of 100 % P_{max} and for wind turbines 2 s for $\Delta P < 50$ % P_{max}	y. st		Р
	After activation, the active power frequency responshall use the actual frequency at any time, reacting any frequency increase or decrease according to the programmed droop with an accuracy of ± 10 % of the nominal power (see Figure 9). The resolution of the frequency measurement shall be ± 10 mHz or less. The accuracy is evaluated with a 1 min average variety at POC, loads if present in the producer's network might interfere with the response of the generating plant. The effect of loads is not considered for the evaluation of the accuracy, only the behaviour of the generating plant is relevant. NOTE 4 With the provision above, the intentional delay in	to ne ne due.		P
	only active for the activation of the function, once the function is operating, the established control loop is not intentionally delayed. NOTE 5 The option of an intentional delay is required sin a very fast and undelayed active power frequency respond in case of loss of mains would correct any excess of generation leading to a generation-consumption balance these circumstances, an unintended islanding situation with stable frequency would take place, in which the correct behaviour of any loss of mains detection based on frequency might be hindered.	ce nse . In vith		
	NOTE 6 The intentional delay is considered relevant for power system stability. For that reason, legal regulations might require a mutual agreement on the setting betwee DSO, responsible party and TSO.			
	Generating plants reaching their minimum regulating level shall, in the event of further frequency increased maintain this power level constant unless the DSO the responsible party requires to disconnect the complete plant or if the plant consists of multiple up by disconnecting individual units.	e, and		Р

TRF No. EN 50549-1:2019 Project No: 64.290.22.31030.01 Rev.: 00 Date: 2022-09-14

Page: 20 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

http://www.tuv-sud.cn

Clause	Requirement + Test	result – Remark	Verdict
	The active power frequency response is only deactivated if the frequency falls below the frequency threshold f ₁ .	су	Р
	If required by the DSO and the responsible party an additional deactivation threshold frequency fstop sh be programmable in the range of at least 50 Hz to fall f fstop is configured to a frequency below f_1 there shade no response according to the droop in case of a frequency decrease (see Figure 10). The output points kept constant until the frequency falls below f_{stop} for a configurable time t_{stop} .	all all wer	Р
	If at the time of deactivation of the active power frequency response the momentary active power P _A , the active power locative power P _A , the active power location increase of the generating plant shall not exceed the gradient defined in 4.10.2.	er	Р
	Settings for the threshold frequency f ₁ , the droop at the intentional delay are provided by the DSO and tresponsible party. If no settings are provided, the default settings in Table 2 should be applied.		Р
	NOTE 7 When applying active power response to overfrequency, the frequency threshold f ₁ should be set to value from 50,2 Hz up to 50,5 Hz. Setting the frequency threshold f ₁ to 52 Hz is considered as deactivating this function.	оа	
	The enabling and disabling of the function and its settings shall be field adjustable and means shall be provided to protect these from unpermitted interference (e.g. password or seal) if required by the DSO and the responsible party.		Р
	NOTE 8 PV generating units are considered to have the ability to reduce power over the full droop range. NOTE 9 Protection setting overrules this behaviour.		
	Alternatively for the droop function described above the following procedure is allowed for generating modules if permitted by the DSO and the responsib party:		Р
	 the generating units shall disconnect at randomize frequencies, ideally uniformly distributed between the frequency threshold f 1 and 52 Hz; 		
	NOTE 10 The usage of a disconnection limit above 51,51 does not necessarily imply the requirement to operate at frequency. Operating range is defined in clause 4.4.4. If the randomized disconnection value is above the operating range and interface protection setting, the unit is disconnected according to chapter 4.9 at the value set by the interface protection.	this ne	
	in case the frequency decreases again, the generating unit shall start its reconnection procedure.	e	

Page: 21 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

Clause	Requirement + Test	result – Remark	Verdict
	once the frequency falls below the specific frequent that initiated the disconnection; for this procedure, connection conditions described in 4.10 do not approximately approximately connection.	the	
	 the randomization shall either be at unit level by changing the threshold over time, or on plant level choosing different values for each unit within a plan or on distribution system level if the DSO specifies specific threshold for each plant or unit connected its distribution system. 	by nt, a to	
	NOTE 11 This procedure could be applied for generating modules for which it is technically not feasible to reduce power with the required accuracy in the required time or reasons within the distribution network for example to prevent unintentional island operation.		
	NOTE 12 The behaviour will, for a part of the network we many such units, result in a similar droop as specified at for controllable generating units and hence will provide f the necessary power system stability. Due to its fast rea capability it contributes significantly to the avoidance of a frequency overshoot.	pove ction	
	EES units that are in charging mode at the time the frequency passes the threshold f ₁ shall not reduce charging power below PM until frequency returns below f ₁ . Storage units should increase the chargi power according to the configured droop. In case t maximum charging capacity is reached or to preve any other risk of injury or damage of equipment, a reduction of charging power is permitted.	the ang	Р
4.6.2	Power response to underfrequency		N/A
	EES units shall be capable of activating active powersponse to underfrequency. Other generating units/plants should be capable of activating active power response to underfrequency. If active power underfrequency is provided by a generating plant/to the function shall comply with the requirements be	to init,	N/A
	NOTE 1: In other documents power response to underfrequency is also described as frequency control of Limited Frequency Sensitive Mode - Underfrequency (LFSM-U).	r	
	Active power response to underfrequency shall be provided when all of the following conditions are m		N/A
	 when generating, the generating unit is operating active power below its maximum active power Pmax 		
	• when generating, the generating unit is operating active power below the available active power P_A ;		
	NOTE 2 In case of EES units, the available power inclu the state of charge of the storage.	des	

Page: 22 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

Clause	Requirement + Test	result – Remark	Verdict
	the voltages at the point of connection of the generating plant are within the continuous operating.	g	
	 voltage range; and when generating, the generating unit is operating with currents lower than its current limit. 	g	
	NOTE 3 These conditions apply to each generating unit individually since the specified conditions need to be me each generating unit individually to allow the unit to increpower.	t by	
	In the case of EES units, active power frequency response to underfrequency shall be provided in charging and generating mode. NOTE 4 In the case of EES units, the charging is regard as a point of operation with negative active power. In charging mode the active power consumption is reduced according to the configured droop. Depending on the de of the underferquency event a change to generating mod will happen. In this case the state of charge of the storage part of the conditions above. NOTE 5 This clause provides additional detail to the	d pth de	N/A
	network code on emergency and restoration (Regulation (EU) 2017/2196) and more precisely on its Article 15 3 (a		
	The active power response to underfrequency shall delivered at a programmable frequency threshold for least between and including 49,8 Hz and 46,0 Hz was a programmable droop in a range of at least 2 % to 12 %. The droop reference Pref is Pmax. If the available primary power or a local set value increases during underfrequency period above the power defined by droop function, higher power values are permitted. The power value calculated according to the droop therefore a minimum limit.	at vith able an the	N/A
	The minimum power limit is, $P_{min-limit} = P_M + \Delta P$ With $\Delta P = \frac{1}{s} \times \frac{(f1-f)}{fn} \times Pref$ with f the actual frequency NOTE 6 In the case of active power response to underfrequency, P_{max} is used as P_{ref} to allow for system support even in case of low power output in the moment event begins. NOTE 7 The active power droop relative to the reference power might also be defined as an active power gradient relative to the reference power. A droop in the range of 2 to 12 % represents a gradient of 100 % to 16,7 % P_{ref} /H with g defined by $g \left[\frac{P}{P_{ref}} / Hz \right] = \frac{1}{s \cdot f_n} \text{ we get } \Delta P = g \cdot P_{ref} \cdot (f_1 - f)$	e t 2 %	N/A

TRF No. EN 50549-1:2019 Project No: 64.290.22.31030.01 Rev.: 00 Date: 2022-09-14

Page: 23 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

http://www.tuv-sud.cn

Clause	Requirement + Test	result – Remark	Verdict
	NOTE 8 In the case of an increase of active power generation, the hierarchy of requirements in clause 4.1 apply.		
	The generating unit shall be capable of activating active power response to underfrequency as fast as technically feasible with an intrinsic dead time that shall be as short as possible with a maximum of 2 s and with a step response time of maximum 30 s unless another value is defined by the relevant party		N/A
	An intentional initial delay shall be programmable to adjust the dead time to a value between the intrinsic dead time and 2 s.		N/A
	After activation, the active power frequency responsibilities shall use the actual frequency at any time, reacting any frequency increase or decrease according to the programmed droop with an accuracy of ± 10 % of the nominal power. The accuracy is evaluated with a 1 min average value. The resolution of the frequency measurement shall be ± 10 mHz or less. At POC loads, if present in the producer's network, might interfere with the response of the generating plant. The effect of loads is not considered for the evaluat of the accuracy, only the behaviour of the generatin plant is relevant.	to e ne ion	N/A
	NOTE 9 With the provision above, the intentional delay is only active for the activation of the function, once the function is operating, the established control loop is not intentionally delayed.	5	
	NOTE 10 The option of an intentional delay is required single a very fast and undelayed active power frequency responsing to a generation leading to a generation-consumption balance, these circumstances, an unintended islanding situation with stable frequency would take place, in which the correct behaviour of any loss of mains detection based on freque might be hindered.	se In ith	
	NOTE 11 The intentional delay is considered relevant for power system stability. For that reason, legal regulations might require a mutual agreement on the setting between DSO, responsible party and TSO.		
	Generating modules reaching any of the conditions above during the provision of active power frequency response shall, in the event of further frequency decrease, maintain this power level constant.	у	N/A
	The active power frequency response is only deactivated if the frequency increases above the frequency threshold f ₁ .		N/A
	Settings for the threshold frequency f1, the droop are the intentional delay are defined by the DSO and the		N/A

Page: 24 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

http://www.tuv-sud.cn

Clause	Requirement + Test res	ult – Remark	Verdict
	responsible party, if no settings are provided, the function shall be disabled. NOTE 12 When applying active power response to underfrequency, the frequency threshold f1 should be set to a value from 49,8 Hz up to 49,5 Hz. Setting the frequency threshold f1 to 46 Hz is considered as deactivating this function.		
	The activation and deactivation of the function and its settings shall be field adjustable and means shall be provided to protect these from unpermitted interference (e.g. password or seal) if required by the DSO and the responsible party.		N/A
4.7	Power response to voltage changes		Р
4.7.1	General		Р
	When the contribution to voltage support is required by the DSO and the responsible party, the generating plant shall be designed to have the capability of managing reactive and/or active power generation according to the requirements of this clause.		Р
4.7.2	Voltage support by reactive power		Р
4.7.2.1	General		Р
	Generating plants shall not lead to voltage changes out of acceptable limits. These limits should be defined by national regulation. Generating units and plants shall be able to contribute to meet this requirement during normal network operation.		Р
	Throughout the continuous operating frequency (see 4.4.2) and voltage (see 4.4.4) range, the generating plant shall be capable to deliver the requirements stipulated below. Outside these ranges, the generating plant shall follow the requirements as good as technically feasible although there is no stated accuracy required.		Р
4.7.2.2	Capabilities	See below table	Р
	Figure 12 gives a graphical representation of the minimum and optional capabilities at nominal voltage.		Р
	Unless specified differently below, for specific generating technologies, generating plants shall be able to operate with active factors as defined by the DSO and the responsible party from active factor = 0,90underexcited to active factor= 0,90overexcited		Р
	The reactive power capability shall be evaluated at the terminals of the/each generating unit		Р
	CHP generating units with a capacity ≤ 150 kVA shall be able to operate with active factors as defined by the		N/A

Page: 25 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

http://www.tuv-sud.cn

Clause	Requirement + Test	result – Remark	Verdict
	DSO from $\cos \phi$ = 0,95underexcited to $\cos \phi$ = 0,95overexcited		
	Generating units with an induction generator coupled directly to the grid and used in generating plants above micro generating level, shall be able to operawith active factors as defined by the DSO from cos 0,95underexcited to $\cos \phi = 1$ at the terminals of the unit. Deviating from 4.7.2.3 only the $\cos \phi$ set point mode is required. Deviating from the accuracy requirements below, the accuracy is only required a active power PD.	ate φ = e	N/A
	Generating units with an induction generator couple directly to the grid and used in micro generating plashall operate with an active factor above 0,95 at the terminals of the generating unit. A controlled voltag support by reactive power is not required from this technology.	ants e	N/A
	Generating units with linear generators, coupled directly and synchronously to the grid shall operate with an active factor above 0,95 at the terminals of generating unit, and therefore a controlled voltage support by reactive power is not required from this technology.		N/A
	In case of different generating technologies with different requirements in one generating plant, each unit shall provide voltage support by reactive power equired for its specific technology. A compensation one technology to reach the general plant requirement is not expected.	r as n of	Р
	The DSO and the responsible party may relax the above requirements. This relaxation might be gene or specific for a certain generating plant or generatitechnology. NOTE 1 The generating unit manufacturer has a certain freedom in the sizing of the output side of the generating considering the advantages and drawbacks in the practicuse of the generating unit when evaluating the need to reduce active output power (e.g. due to voltage changes reactive power exchange) in order to respond to the requirements of this European Standard. This is indicate the Design freedom area in Figure 12.	unit cal or	N/A
	All involved parties can expect to have access to information documenting the actual choices regard active power capabilities relative to reactive power requirements and related to the power rating in the operating voltage range (see further in this clause). P-Q Diagram shall be included in the product documentation of a generating unit.		N/A

Page: 26 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

Clause	Requirement + Test	result – Remark	Verdict
	NOTE 2 For additional network support an optional exten reactive power capability according to Figure 12 might be provided by the generating plant, if agreed on between the DSO and the producer and is generally required in some countries for some technologies by legal regulations. NOTE 3 Additional requirements (e.g. continuous Var compensation or continuous reactive power operation disregarding the availability of the primary energy) might provided by the generating plant, if agreed between the E and the producer. NOTE 4 In case of overvoltage, additional reactive power might be exchanged up to the rated current (increasing the apparent power as a consequence), if agreed on between the DSO and the producer.	be DSO	
	When operating above the apparent power thresho Smin equal to 10 % of the maximum apparent power Smax or the minimum regulating level of the generating plant, whichever is the higher value, the reactive power capability shall be provided with an accuracy of ± 2 % Smax. Up to this apparent power threshold Smin, deviations above 2 % are permissil nevertheless the accuracy shall always be as good technically feasible and the exchange of uncontrolle reactive power in this low-power operation mode should not exceed 10 % of the maximum apparent power Smax. At POC loads, if present in the producer's network might interfere with the response of the generating plant. The effect of loads is not consider for the evaluation of the accuracy, only the behavior of the generating plant is relevant.	ole; as ed nall	Р
	For generating units with a reactive power capability according Figure 12 the reactive power capability at active power PD shall be at least according Figure For generating units with a reduced reactive power capability Figure 13 is only applicable up to the maximum reactive power capability. NOTE 5 Depending on the P-Q characteristic of the generating plant/unit, the reactive power at active powers below PD might be lower respecting the requirements above. If no or less than 0,484 Q/PD reactive power is required, the active power might increase above PD as indicated in Figure 12	t 13.	Р
	For voltages below Unit is allowed to reduce appare power according to 4.4.4	ent	Р
4.7.2.3	Control modes		Р
4.7.2.3.1	General		Р
	Where required, the form of the contribution to volta control shall be specified by the DSO. The control shall refer to the terminals of the generating units	age	Р

Page: 27 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

http://www.tuv-sud.cn

Clause	Requirement + Test	esult – Remark	Verdict
	The generating plant/unit shall be capable of operati in the control modes specified below within the limits specified in 4.7.2.2. The control modes are exclusive only one mode may be active at a time.	5	Р
	Q setpoint mode		Р
	• Q (U)		Р
	Cos φ setpoint mode		Р
	• Cos φ (P)		Р
	For mass market products, it is recommended to implement all control modes. In case of site specific generating plant design, only the control modes required by the DSO need to be implemented.		Р
	The configuration, activation and deactivation of the control modes shall be field adjustable. For field adjustable configurations and activation of the active control mode, means shall be provided to protect the settings from unpermitted interference (e.g. password or seal) if required by the DSO. Which control mode are available in a product and how they are configure shall be stated in the product documentation.	erd s	Р
4.7.2.3.2	Setpoint control modes	See below table	Р
	Q setpoint mode and $\cos \phi$ setpoint mode control th reactive power output and the $\cos \phi$ of the output respectively, according to a set point set in the control the generating plant/unit.		Р
	In the case of change of the set point local or by remote control the settling time for the new set point shall be less than one minute.		Р
4.7.2.3.3	Voltage related control modes	See below table	Р
	The voltage related control mode Q (U) controls the reactive power output as a function of the voltage.	Q(U) control mode, voltage setting is 0.93Un ~ 0.97Un, 0.93Un for Qmax, 1.03Un ~ 1.07Un, 1.07Un for Qmin	Р
	There is no preferred state of the art for evaluating the voltage. Therefore it is the responsibility of the generating plant designer to choose a method. One the following methods should be used:		Р
	the positive sequence component of the fundamental;		
	 the average of the voltages measured independent for each phase to neutral or phase to phase; 	tly	
	• phase independently the voltage of every phase to determine the reactive power for every phase.		

Page: 28 of 93

Telephone : +86 20 3832 0668 Telefax : +86 20 3832 0478

http://www.tuv-sud.cn

Clause	Requirement + Test	resul	lt – Remark	Verdict
	For voltage related control modes, a characteristic a minimum and maximum value and three connect lines according to Figure 16 shall be configurable.			Р
	In addition to the characteristic, further parameters shall be configurable: • The dynamics of the control shall correspond with first order filter having a time constant that is configurable in the range of 3 s to 60 s. NOTE 1 The time to perform 95 % of the changed set podue to a change in voltage will be 3 times the time const NOTE 2 The dynamic response of the generating units to voltage changes is not considered here. The response to disturbances as in 4.5 and short circuit current equirement as in 4.7.4 is not included in this clause. NOTE 3 An intentional delay is under consideration.	on a sint ant.	The dynamics of control time set is 10 s	P
	To limit the reactive power at low active power two methods shall be configurable: • a minimal cos φ shall be configurable in the rango 0-0,95; • two active power levels shall be configurable bott least in the range of 0 % to 100 % of PD. The lock-value turns the Q(U) mode on, the lock-out value to Q(U) off. If lock-in is larger than lock-out a hysteres is given. See also Figure 14.	n at in urns	Lock-in value setting: 20%Pn. Lock-out value setting: 5%Pn	Р
	The static accuracy shall be in accordance with 4.7.2.2. The dynamic accuracy shall be in accordal with Figure 15 with a maximum tolerance of +/- 5% PD plus a time delay of up to 3 seconds deviating an ideal first order filter response.	of		Р
4.7.2.3.4	Power related Control mode:		See below table	Р
	The power related control mode $\cos \phi$ (P) controls $\cos \phi$ of the output as a function of the active power output.			Р
	For power related control modes, a characteristic vaminimum and maximum value and three connect lines shall be configurable in accordance with Figur 16.	ed		Р
	Resulting from a change in active power output a ross ϕ set point is defined according to the set characteristic. The response to a new $\cos \phi$ set vas shall be as fast as technically feasible to allow the change in reactive power to be in synchrony with the change in active power. The new reactive power so value shall be reached at the latest within 10 s after the end value of the active power is reached. The static accuracy of each $\cos \phi$ set point shall be according to 4.7.2.2.	lue ne et		Р

Page: 29 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

Clause	Requirement + Test	result – Remark	Verdict
4.7.3	Voltage related active power reduction	See below table	Р
4.7.0	In order to avoid disconnection due to overvoltage protection (see 4.9.2.3 and 4.9.2.4), generating plants/units are allowed to reduce active power out as a function of this rising voltage. The final implemented logic can be chosen by the manufacturer. Nevertheless, this logic shall not cau steps or oscillations in the output power. The powe reduction caused by such a function may not be fast than an equivalent of a time constant tau = 3 s (= 33%/s at a 100% change). The enabling and disab of the function shall be field adjustable and means have to be provided to protect the setting from unpermitted interference (e.g. password or seal) if required by the DSO.	The overvoltage derating setting and response time setting: 1.10Un and 10s	P
4.7.4	Short circuit current requirements on generating pla	ants	N/A
4.7.4.1	General		N/A
	The following clauses describe the required short circuit current contribution for generating plants tak into account the connection technology of the generating modules.	ing	N/A
	Generating modules classified as type B modules according to COMMISSION REGULATION 2016/6 shall comply with the requirements of 4.7.4.2 and 4.7.4.3. Generating modules classified as type A according to COMMISSION REGULATION 2016/6 should comply with these requirements. The actual behaviour of type A modules shall be specified in the connection agreement. NOTE Based on the chosen banding threshold it is considered necessary to include generating modules classified as type A if connected to medium voltage distribution grids. Exemption is only acceptable for CHP generating units based on rotating machinery below 50 k as EN 50465 for gas appliance requests disconnection in case of under voltage.	31 ne and	N/A
4.7.4.2	Generating plant with non-synchronous generating technology		N/A
4.7.4.2.1	Voltage support during faults and voltage steps		N/A
	In general no voltage support during faults and volt steps is required from generating plants connected LV distribution networks as the additional reactive current is expected to interfere with grid protection equipment. If the responsible party requires voltage support during faults and voltage steps for generati plants of type B connected to LV distribution grids, clause 4.7.4 of EN 50549-2 applies.	in e ng	N/A

Page: 30 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

http://www.tuv-sud.cn

Clause	Requirement + Test	result – Remark	Verdict
4.7.4.2.2	Zero current mode for converter connected general technology	ting	N/A
	If UVRT capability (see 4.5.3) is provided additional the requirements of 4.5, generating units connected the grid by a converter shall have the capability to reduce their current as fast as technically feasible down to or below 10 % of the rated current when the voltage is outside of a static voltage range. General units based on a doubly fed induction machine can only reduce the positive sequence current below 10 of the rated current. Negative sequence current shabe tolerated during unbalanced faults. In case this current reduction is not sufficient, the DSO should choose suitable interface protection settings.	ne ting	N/A
	The static voltage range shall be adjustable from 2 to 100 % of Un for the undervoltage boundary and from 100 % to 130 % of Un for the overvoltage boundary. The default setting shall be 50% of Un for the undervoltage boundary and 120% of Un for the overvoltage boundary. Each phase to neutral voltage if no neutral is present each phase to phase volt shall be evaluated. At voltage re-entry into the voltage, 90% of pre-fault power or available power, whichever is the smallest, shall be resumed as fast possible, but at the latest according to 4.5.3 and 4.	ge age age	N/A
	All described settings are defined by the DSO and responsible party. If no settings are provided, the function shall be disabled.	the	N/A
	The enabling and disabling and the settings shall be field adjustable and means have to be provided to protect these from unpermitted interference (e.g. password or seal) if required by the DSO.	е	N/A
4.7.4.2.3	Induction generator based units		N/A
	In general no voltage support during faults and volt steps is required from generating plants connected LV distribution networks as the additional reactive current is expected to interfere with grid protection equipment. If the responsible party requires voltage support during faults and voltage steps for generating plants of type B connected to LV distribution grids, clause 4.7.4 of EN50549-2 applies.	in e	N/A
4.7.4.3	Generating plant with synchronous generating technology - Synchronous generator based units		N/A
	In general no voltage support during faults and volt steps is required from generating plants connected LV distribution networks as the additional reactive current is expected to interfere with grid protection equipment. If the responsible party requires voltage	in	N/A

Page: 31 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

http://www.tuv-sud.cn

Clause	Requirement + Test	esult – Remark	Verdict
	support during faults and voltage steps for generating plants of type B connected to LV distribution grids, the clause 4.7.4 of EN50549-2 applies.		
4.8	EMC and power quality	Refer to EMC report, report No.:64.772.21.30406.01	Р
	Similar to any other apparatus or fixed installation, generating units shall comply with the requirements electromagnetic compatibility established in Directive 2014/30/EU or 2014/53/EU, whichever applies.		Р
	EMC limits and tests, described in EN 61000 series, have been traditionally developed for loads, without taking into account the particularities of generating units, such as their capability to create over-voltages or high frequency disturbances due to the presence power converters, which were either impossible or leftequent in case of loads.	s of	Р
	Harmonic emissions;		Р
	Flicker and voltage fluctuations;		Р
	• DC injection;		Р
	Short and long duration overvoltages emission;		N/A
	Switching frequency emission;		N/A
	• Immunity to voltage dips and short interruptions;		N/A
	Immunity to frequency variation;	See clause 4.5.2	P
	Immunity to harmonics and inter-harmonics;		P
	Unbalance.		P
	As long as specific tests for generating units are not available for immunity and/or emission, generic EMC standards and/or any relevant EU harmonized EMC standard, should be applied. NOTE 2 Besides the compliance with EN61000 Series, in most countries power quality characteristic according to standards such as for example EN 61400–21 or VDE V 0124–100 are required as part of the connection agreement.	harmonics, Flicker, DC injection, Frequency viriation, Three-phase unbalance were tested	Р
	Additional phenomena need to be addressed specifically to generating plants and their integration the power system.		Р
	• ROCOF: See 4.5.2		Р
	• UVRT: See 4.5.3	Not suitable for Type A unit	N/A
	• OVRT: See 4.5.4	Not suitable for Type A unit	N/A
	DC injection: Generating plants shall not inject direcurrents.	ect	Р

Page: 32 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

Clause	Requirement + Test	result – Remark	Verdict
	NOTE 3 The DC injection clause is considered to be pass when for all generating units within the generating plant the measured DC injection of a type-tested unit is below the testing threshold.		
	Generating plants can also disturb mains signalling (ripple control or power line carrier systems). EMC requirements on inter-harmonics and on conducted disturbances in the frequency range between 2 kHz and 150 kHz are under development. In case of electromagnetic interferences to mains signalling systems due to the connection of a generating plant mitigation measures should be taken and national requirements may apply.		N/A
	Generating units are also expected to be compatible with voltage characteristics at the point of connectio as described in EN 50160 or in national regulations; however no compliance test is required due to the scope of EN 50160.	n,	N/A
4.9	Interface protection		Р
4.9.1	General		Р
	According to HD 60364-5-551:2010, 551.7.4, means of automatic switching shall be provided to disconne the generating plant from the distribution network in the event of loss of that supply or deviation of the voltage or frequency at the supply terminals from values declared for normal supply.	ect	P
	This automatic means of disconnection has following main objectives:	g	Р
	 prevent the power production of the generating plated to cause an overvoltage situation in the distribution network it is connected to. Such overvoltages could result in damages to the equipment connected to the distribution network as well as the distribution network itself; 	e	
	 detect unintentional island situations and disconners the generating plant in this case. This is contributing prevent damage to other equipment, both in the producers' installations and the distribution network due to out of phase re-closing and to allow for maintenance work after an 	g to	
	intentional disconnection of a section of the distribut network;	ion	
	NOTE 1 It is pointed out that checking the absence of voltage on all the live conductors is anyway mandatory before accessing a site for (maintenance) work.		
	 assist in bringing the distribution network to a controlled state in case of voltage or frequency deviations beyond corresponding regulation values. 		

Page: 33 of 93

Telephone : +86 20 3832 0668 Telefax : +86 20 3832 0478

http://www.tuv-sud.cn

Clause	Requirement + Test	result – Remark Verd	lict
	It is not the purpose of the interface protection systo: • disconnect the generating plant from the distribution network in case of faults internal to the power generating plant. Protection against internal faults (short-circuits) shall be coordinated with network protection, according to DSO protection criteria. Protection against e.g. overload, electric shock and against fire hazards shall be implemented addition according to HD 60364-1 and local requirements; • prevent damages to the generating unit due to incidents (e.g. short circuits) on the distribution network	d	
	Interface protections may contribute to preventing damage to the generating units due to out-of-phas reclosing of automatic reclosing which may happen after some hundreds of ms. However, in some countries some technologies of generating units are explicitly required to have an appropriate immunity level against the consequences of out-of-phase reclosing.	e e	
	The type of protection and the sensitivity and operating times depend upon the protection and the characteristics of the distribution network.	e P	
	A wide variety of approaches to achieve the above mentioned objectives is used throughout Europe. Besides the passive observation of voltage and frequency other active and passive methods are available and used to detect island situations. The requirements given in this clause are intended to provide the necessary functions for all known approaches as well as to give guidance in their use Which functions are available in a product shall be stated in the product documentation.	э.	
	The interface protection system shall comply with a requirements of this European Standard, the availations and configured settings shall comply with requirements of the DSO and the responsible parts any case, the settings defined shall be understood the values for the interface protection system, i.e. where there is a wider technical capability of the generation module, it shall not be withheld by the settings of the protections (other than the interface protection).	able the /. In as	
	For micro generating plants, the interface protection system and the point of measurement might be integrated into the generating units. For generating plants with nominal current above 16 A the DSO modefine a threshold above which the interface protections.	J Jay	

Page: 34 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

http://www.tuv-sud.cn

Clause	Requirement + Test	esult – Remark	Verdict
	system shall be realized as a dedicated device and integrated into the generating units.	not	
	NOTE 2 Example thresholds are 11,08 kW per generating plant (Italy), 30 kVA per generating plant (Germany, Austrand 50 kW per generating unit (GB)		
	NOTE 3 Integrated interface protection systems might not possible for two different reasons:	be	
	 to place the protection system as close to the point of connection as possible, to avoid tripping due to overvoltages resulting from the voltage rise within the producer's network; 		
	 to allow for periodic field tests. In some countries periodic field tests are not required if the protection system meets the requirements of single fault safety 	<i>'</i> .	
	The interface protection relay acts on the interface switch. The DSO may require that the interface protection relay acts additionally on another switch with a proper delay in case the interface switch fails operate.	to	Р
	In case of failure of the power supply of the interface protection, the interface protection shall trigger the interface switch without delay. An uninterruptible power supply may be required by the DSO, for instance in case of UVRT capability, delay in protection etc.		Р
	In case of field adjustable settings of threshold and operation time, means shall be provided to protect to settings from unpermitted interference (e.g. passwo or seal) if required by the DSO.		Р
4.9.2	Void		N/A
4.9.3	Requirements on voltage and frequency protection		Р
4.9.3.1	General		Р
	Part or all of the following described functions may be required by the DSO and the responsible party. NOTE 1 In the following the headings of the clause section contain ANSI device numbers according to IEEE/ANSI C37.2 in square brackets e.g. [27].		Р
	The protection functions shall evaluate at least all phases where generating units, covered by this protection system, are connected to.	Three phases are evaluated the protection functions	Р
	In case of three phase generating units/plants and in all cases when the protection system is implemented as an external protection system in a three phase power supply system, all phase to phase voltages a if a neutral conductor is present, all phase to neutral voltages shall be evaluated.	nd,	Р

Page: 35 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

Clause	Requirement + Test	result – Remark	Verdict
	NOTE 2 It is possible to calculate the phase to phase voltages based on phase-neutral measurements.		
	The frequency shall be evaluated on at least one of the voltages.	f	Р
	If multiple signals (e.g. 3 phase to phase voltages) to be evaluated by one protection function, this function shall evaluate all of the signals separately. The output of each evaluation shall be OR connect so that if one signal passes the threshold of a function shall trip the protection in the specified time.	voltages were evaluated separately ted, tion,	P
	The minimum required accuracy for protection is:		Р
	• for frequency measurement ± 0,05 Hz;		
	• for voltage measurement ± 1 % of Un.		
	• The reset time shall be ≤50ms		
	• The interface protection relay shall not conduct continuous starting and disengaging operations of interface protection relay. Therefore a reasonable reset ratio shall be implemented which shall not be zero but be below 2% of nominal value for voltage below 0,2Hz for frequency.		
	NOTE 3 If the interface protection system is external to t generating unit, it is preferably located as close as possi to the point of connection. The voltage rise between the point of connection and the measurement input of the interface protection system is then kept as small as poss to avoid nuisance tripping of the overvoltage protection.	ble	
4.9.3.2	Undervoltage protection [27]	See below table	Р
	The protection shall comply with EN 60255-127. The evaluation of the r.m.s. or the fundamental value is allowed. Undervoltage protection may be implemented with completely independent protection thresholds, each	two	P
	one able to be activated or not. The standard adjustment ranges are as follows.		
	 Undervoltage threshold stage 1 [27 <]: Threshold (0,2 – 1) Un adjustable by steps of 0,0 Un Operate time (0,1 – 100) s adjustable in steps of 	setting time: 0.1s	Р
	s		
	Undervoltage threshold stage 2 [27 < <]: • Threshold (0,2 – 1) Un adjustable by steps of 0,0 Un	setting time: 0.1s	Р
	 Operate time (0,1 − 5) s adjustable in steps of 0,0 	05 s	

Page: 36 of 93

Telephone : +86 20 3832 0668 Telefax : +86 20 3832 0478

Clause	Requirement + Test	result – Remark	Verdict
	The undervoltage threshold stage 2 is not applicable for micro-generating plants)	Р
4.9.3.3	Overvoltage protection [59]	See below table	Р
	The protection shall comply with EN 60255-127. The evaluation of the r.m.s. or the fundamental value is allowed. Overvoltage protection may be implemented with two completely independent protection thresholds, each one able to be activated or not. The standard adjustment ranges are as follows.	0	Р
	Overvoltage threshold stage 1 [59 >]: • Threshold (1,0 – 1,2) Un adjustable by steps of 0,0 Un • Operate time (0,1 – 100) s adjustable in steps of 0 s	setting time: 0.1s	Р
	Overvoltage threshold stage 2 [59 > >]: • Threshold (1,0 – 1,30) Un adjustable by steps of 0,01 Un • Operate time (0,1 – 5) s adjustable in steps of 0,05	1.20 Un is set and tested respectively setting time: 0.1s	Р
4.9.3.4	Overvoltage 10 min mean protection	See below table	Р
	The calculation of the 10 min value shall comply with the 10 min aggregation of EN 61000-4-30 Class S, I deviating from EN 61000-4-30 as a moving window used. Therefore the function shall be based on the calculation of the square root of the arithmetic mean the squared input values over 10 min. The calculation of a new 10 min value at least every 3 s is sufficient which is then to be compared with the threshold value.	out is of on	P
	• Threshold (1,0 – 1,15) Un adjustable by steps of 0,01 Un	1.10 Un is set and tested respectively	Р
	 Start time ≤ 3s not adjustable Time delay setting = 0 ms NOTE 1 This function evaluates the r.m.s value. NOTE 2 More information can be found in EN 50160. 		
4.9.3.5	Underfrequency protection [81<]	See below table	Р
	Underfrequency protection may be implemented wit two completely independent protection thresholds, each one able to be activated or not. The standard adjustment ranges are as follows.	h	Р
	Underfrequency threshold stage 1 [81 <]: • Threshold (47,0 – 50,0) Hz adjustment by steps of 0,1 Hz	47.5 Hz is set and tested respectively setting time: 0.1s	Р

Page: 37 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

http://www.tuv-sud.cn

Clause	Requirement + Test	result – Remark	Verdict
	Operate time (0,1 – 100) s adjustable in steps of s	0,1	
	 Underfrequency threshold stage 2 [81 < <]: Threshold (47,0 – 50,0) Hz adjustment by steps of 0,1 Hz Operate time (0,1 – 5) s adjustable in steps of 0,0 	setting time: 0.1s	P
	In order to use narrow frequency thresholds for islanding detection (see 4.9.3.3) it may be required have the ability to activate and deactivate a stage to an external signal.		Р
	The frequency protection shall function correctly in input voltage range between 20 % Un and 120 % U and shall be inhibited for input voltages of less than 20 % Un.	Jn	Р
	Under 0,2 Un the frequency protection is inhibited. Disconnection may only happen based on undervoltage protection.		Р
4.9.3.6	Overfrequency protection [81>]	See below table	Р
	Overfrequency protection may be implemented with two completely independent protection thresholds, each one able to be activated or not. The standard adjustment ranges are as follows.	n	Р
	Overfrequency threshold stage 1 [81 >]: • Threshold (50,0 - 52,0) Hz adjustment by steps o 0,1 Hz • Operate time (0,1 – 100) s adjustable in steps of s	setting time: 0.1s	P
	Overfrequency threshold stage 2 [81 > >]: • Threshold (50,0 - 52,0) Hz adjustment by steps o 0,1 Hz • Operate time (0,1 - 5) s adjustable in steps of 0,0	setting time: 0.1s	Р
	In order to use narrow frequency thresholds for islanding detection (see4.9.3.3) it may be required have the ability to activate and deactivate a stage to an external signal.	to	N/A
	The frequency protection shall function correctly in input voltage range between 20 % Un and 120 % U and shall be inhibited for input voltages of less than 20 % Un.	Jn	Р
4.9.4	Means to detect island situation		Р
4.9.4.1	General		Р

Page: 38 of 93

Clause	Requirement + Test	esult – Remark	Verdict
	Besides the passive observation of voltage and frequency further means to detect an island may be required by the DSO. Detecting islanding situations shall not be contradictory to the immunity requirements of 4.5.	See below table	P
	Commonly used functions include: • Active methods tested with a resonant circuit; • ROCOF tripping; • Switch to narrow frequency band; • Vector shift • Transfer trip.		P
	Only some of the methods above rely on standards. Namely for ROCOF tripping and for the detection of vector shift, also called a vector jump, currently no European Standard is available.		P
4.9.4.2	Active methods tested with a resonant circuit		Р
	These are methods which pass the resonant circuit test for PV inverters according to EN 62116.		Р
4.9.4.3	Switch to narrow frequency band (see Annex E and Annex F)		N/A
	In case of local phenomena (e.g. a fault or the openi of circuit breaker along the line) the DSO in coordination with the responsible party may require a switch to a narrow frequency band to increase the interface protection relay sensitivity. In the event of a local fault it is possible to enable activation of the restrictive frequency window (using the two underfrequency/overfrequency thresholds described 4.9.2.5 and 4.9.2.6) correlating its activation with another additional protection function.	a a	N/A
	If required by the DSO, a digital input according to 4.9.4 shall be available to allow the DSO the activation of a restrictive frequency window by communication. NOTE An additional gateway to ensure communication with the DSO communication system might be required.		N/A
4.9.5	Digital input to the interface protection		N/A
	If required by the DSO, the interface protection shall have at least two configurable digital inputs. These inputs can for example be used to allow transfer trip the switching to the narrow frequency band.		N/A
4.10	Connection and starting to generate electrical po	ower	Р
4.10.1	General		Р

Page: 39 of 93

Clause	Requirement + Test	result – Remark	Verdict
	Connection and starting to generate electrical power only allowed after voltage and frequency are within allowed voltage and frequency ranges for at least the specified observation time. It shall not be possible to overrule these conditions.	the e	Р
	Within these voltage and frequency ranges, the generating plant shall be capable of connecting and starting to generate electrical power.		Р
	The setting of the conditions depends on whether the connection is due to a normal operational start-up of an automatic reconnection after tripping of the interface protection. In case the settings for automate reconnection after tripping and starting to generate power are not distinct in a generating plant, the tight range and the start-up gradient shall be used.	r ric	Р
	The setting of the conditions depends on whether the connection is due to a normal operational start-up of an automatic reconnection after tripping of the interface protection. In case the settings for automate reconnection after tripping and starting to generate power are not distinct in a generating plant, the tight range and the start-up gradient shall be used.	r ric	Р
	For field adjustable settings, means shall be provide to protect the settings from unpermitted interference (e.g. password or seal) if required by the DSO.		Р
4.10.2	Automatic reconnection after tripping	See below table	Р
	The frequency range, the voltage range, the observation time shall be adjustable in the range according to Table 3 column 2. If no settings are specified by the DSO and the responsible party, the default settings for the reconnection after tripping of the interface protection are according to Table 3 column 3.	The reconnect time is set to 60 seconds	Р
	After reconnection, the active power generated by the generating plant shall not exceed a specified gradient expressed as a percentage of the active nominal power of the unit per minute. If no gradient is specified by the DSO and the responsible party, the default setting is 10 % Pn/min. Generating modules for which it is technically not feasible to increase the power respecting the specified gradient over the full power range may connect after 1 min to 10 min (randomized value, uniformly distributed) or later.	nt ed ch	Р
4.10.3	Starting to generate electrical power	See below table	Р
	The frequency range, the voltage range, the observation time shall be adjustable in the range according to Table 4 column 2. If no settings are		Р

Page: 40 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

Clause	Requirement + Test	result – Remark	Verdict
	specified by the DSO and the responsible party, the default settings for connection or starting to generate electrical power due to normal operational start-up of activity are according to Table 4 column 3.	e	
	If applicable, the power gradient shall not exceed the maximum gradient specified by the DSO and the responsible party. Heat driven CHP generating units do not need to keep a maximum gradient, since the start up is randomized by the nature of the heat demand.		Р
	For manual operations performed on site (e.g. for the purpose of initial start-up or maintenance) it is permitted to deviate from the observation time and ramp rate.	e	N/A
4.10.4	Synchronization		Р
	Synchronizing a generating plant/unit with the distribution network shall be fully automatic i.e. it shanot be possible to manually close the switch between the two systems to carry out synchronization.		Р
4.11	Active power reduction on set point		Р
4.11.1	Ceasing active power		Р
	Generating plants with a maximum capacity of 0,8 k or more shall be equipped with a logic interface (inp port) in order to cease active power output within fiv seconds following an instruction being received at the input port. If required by the DSO and the responsib party, this includes remote operation.	ut e ne	Р
4.11.2	Reduction of active power on set point	See below table	Р
	For generating modules of type B, a generating plar shall be capable of reducing its active power to a lim value provided remotely by the DSO. The limit value shall be adjustable in the complete operating range from the maximum active power to minimum regulating level.	nit	Р
	The adjustment of the limit value shall be possible was a maximum increment of 10% of nominal power.	rith	Р
	A generation unit/plant shall be capable of carrying the power output reduction to the respective limit within an envelope of not faster than 0,66 % Pn/s a not slower than 0,33 % Pn/s with an accuracy of 5 of nominal power. Generating plants are permitted to disconnect from the network at a limit value below it minimum regulating level. If required by the DSO, the includes remote operation.	nd % o	Р

Page: 41 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

Clause	Requirement + Test re	esult – Remark	Verdict
	NOTE Besides the requirements of this clause there might be other systems in place to control active power for reaso of market participation or local optimisation.		
4.12	Remote information exchange		N/A
	Generating plants whose power is above a threshold to be determined by the DSO and the responsible party shall have the capacity to be monitored by the DSO or TSO control centre or control centres as well as receive operation parameter settings for the functions specified in this European Standard from the DSO or TSO control centre or control centres.	I	N/A
	This information exchange is aimed at allowing the DSO and/or the TSO to improve, optimize and make safer the operation of their respective networks.		N/A
	The remote monitoring and operation parameter settings system that may be used by the DSO is not aimed at replacing the manual and automatic control means implemented by the generating plant operato to control the operation of the generating plant. It should not interact directly with the power generation equipment and the switching devices of the generating plant. It should interact with the operation and control system of the generating plant.	r n ng	N/A
	In principle, standardized communication should be used. It is recommended that in case of using protocols for signal transmission used between the DSO or TSO control centre or control centres and the generating plant, relevant technical standards (e.g. E 60870-5-101, EN 60870-5-104, EN 61850 and in particular EN 61850-7-4, EN 61850-7-420, IEC/TR 61850-90-7, as well as EN 61400-25 for wind turbine and relevant parts of IEC 62351 for relevant security measures) are recognized.	es es	N/A
	Alternative protocols can be agreed between the DS and the producer. These protocols include hardwired digital input/output and analogue input/output provide locally by DSO. The information needed for remote monitoring and the setting of configurable parameter are specific to each distribution network and to the way it is operated.	d ed	N/A
	Signal transmission times between the DSO and/or the TSO control centre and the generating plant will depend on the means of transmission used between the DSO and/or TSO control centre and the generating plant.		N/A
	Informative Annex B of EN50549-2 can be used as guidance regarding the monitoring information and the remote operation parameter setting.	ne	N/A

Page: 42 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

Clause	se Requirement + Test result - Remark		Verdict
4.13	Requirements regarding single fault tolerance of system and interface switch	interface protection	Р
	If required in 4.3.2, the interface protection system and the interface switch shall meet the requirements of single fault tolerance.		Р
	A single fault shall not lead to a loss of the safety functions. Faults of common cause shall be taken in account if the probability for the occurrence of such fault is significant. Whenever reasonably practical, the individual fault shall be displayed and lead to the disconnection of the power generating unit or system NOTE This requirement for the detection of individual fault does not mean that all faults are detected. Accumulation of undetected faults can therefore lead to an unintentional output signal and result in a hazardous condition.	a ne n. ts	P
	Series-connected switches shall each have a independent breaking capacity corresponding to the rated current of the generating unit and corresponding to the short circuit contribution of the generating unit	ng	Р
	The short-time withstand current of the switching devices shall be coordinated with maximum short circuit power at the connection point.		Р
	At least one of the switches shall be a switch-disconnector suitable for overvoltage category 2. Fo single-phase generating units, the switch shall have one contact of this overvoltage category for both the neutral conductor and the line conductor. For polyphase generating units, it is required to have one contact of this overvoltage category for all active conductors. The second switch may be formed of electronic switching components from an inverter bridge or another circuit provided that the electronic switching components can be switched off by control signals and that it is ensured that a failure is detected and leads to prevention of the operation at the latest the next reconnection.	ol od	P
	For PV-inverters without simple separation between the network and the PV generating unit (e.g. PV-Inverter without transformer) both switches mentione in the paragraph above shall be switch-disconnected with the requirements described therein, although or switching device is permitted to be located between PV array and PV inverter.	ed rs ne	Р

Page: 43 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

Clause Requirement + Test	result – Remark	Verdict	
---------------------------	-----------------	---------	--

4.4.2 & 4.4.4 Op	erating frequency range & Continuo	ous ope	rating voltage range	Р
Setting (Minimum	requirement)	Can operate according to minimum requirement?		imum requirement?
Test #1	47.5 Hz at least operate 30 min		Yes	
Test #2	51.5 Hz at least operate 30 min		Yes	
Setting (Most strin	gent requirement)	Can op	erate according to min	imum requirement?
Test #1	47.0 Hz at least operate 20 s		Yes	
Test #2	47.5 Hz at least operate 90 min		Yes	
Test #3	51.5 Hz at least operate 90 min		Yes	
Test #4	52.0 Hz at least operate 15 min		Yes	
	VT-6615	310		
Setting Voltage	85% Un*		110%	Un^
U _{L1-L2} (Va.c.)	338.46	437.91		91
U _{L2-L3} (Va.c.)	338.56	438.07		07
U _{L3-L1} (Va.c.)	338.62	338.62 438.14		.14
U _{L1-N} (Va.c.)	195.41	195.41 252.83		83
U _{L2-N} (Va.c.)	195.47		252.92	
U _{L3-N} (Va.c.)	195.50	252.96		96
I _{L1} (Aa.c.)	21.74		19.9	91
I _{L2} (Aa.c.)	21.85		19.9	99
I _{L3} (Aa.c.)	21.82	19.98		98
P (W)	12749.30		15100	0.69
Q (Var)	-386.20		325.	18
S (VA)	12784.45	_	15144	4.83

Remark "*": Low voltage cannot reach full power due to maximum current limit; "^":Active current limit, the maximum power output can only be reached 15000W.

4.4.3	Minimal requ	Minimal requirement for active power delivery at underfrequencies				
Test sequence	Freq (Hz)	Measured active output power P _{measure} (W)	The calculated active output power as per feature curve Pminimum (W)	Deviation of P _{shall} (W) less than P _{measure} ? (Yes/No)		
1	50.00	15080.43	(100%Pn)	Yes		
2	49.50	15079.24	(100%Pn)	Yes		
3	49.00	15079.87	(100%Pn)	Yes		
4	48.50	15077.89	(99%Pn)	Yes		

Rev.: 00 Date: 2022-09-14 Page: 44 of 93

Clause	Requirement + 7	Test	result – Remark		Verdict
_					
5	48.00	15076.42	(98%Pn)	Yes	
6	47.50	15078.27	(97%Pn)	Yes	
Suppleme	Supplementary information: N/A				

4.5.2	Rate of change of frequency (ROCOF) immunity				
	RoCoF operation test, +/-2.0Hz/s for smooth time window of 0.5s				
	Setting		ction during CoF		
Test #1	47.0Hz to 49.0Hz, enhance 2Hz/s, 100% Un, cosφ=1	No disc	onnection		
Test #2	49.0Hz to 51.0Hz, enhance 2Hz/s, 100% Un, cosφ=1	No disc	onnection		
Test #3	52.0Hz to 50.0Hz, enhance 2Hz/s, 100% Un, cosφ=1	No disc	onnection		
Test #4	50.0Hz to 48.0Hz, enhance 2Hz/s, 100% Un, cosφ=1	No disconnection			
Test #5	47.0Hz to 49.0Hz, enhance 2Hz/s, 85% Un, cosφ=1	No disconnection			
Test #6	49.0Hz to 51.0Hz, enhance 2Hz/s, 85% Un, cosφ=1	No disconnection			
Test #7	52.0Hz to 50.0Hz, enhance 2Hz/s, 85% Un, cosφ=1	No disc	onnection		
Test #8	50.0Hz to 48.0Hz, enhance 2Hz/s, 85% Un, cosφ=1	No disc	onnection		
Test #9	47.0Hz to 49.0Hz, enhance 2Hz/s, 110% Un, cosφ=1	No disc	onnection		
Test #10	49.0Hz to 51.0Hz, enhance 2Hz/s, 110% Un, cosφ=1	No disc	onnection		
Test #11	52.0Hz to 50.0Hz, enhance 2Hz/s, 110% Un, cosφ=1	No disconnection			
Test #12	50.0Hz to 48.0Hz, enhance 2Hz/s, 110% Un, cosφ=1	No disconnection			
Supplemen	Supplementary information: N/A				

4.6.1 Power response to overfrequency

Р

a) For Type 2 generation unit (PV or PV+ESS), over-frequency regulation, with active power reduction frequency start point=50.2Hz, gradient s=5%

Stage 1: TYPE 2 inverter DC input power is set to 100% of maximum active output power till the end of the test. The active power value shall not be deviated from the required value calculated from the feature curve for more than 10% P_n.

 $P_M = 14945.43$, 10% $P_n = 1500$, intentional delay time: 0.4 s (should $\leq 2s$)

Test sequence	Freq (Hz)	Measured active output power Pmeasure (W)	The calculated active output power as per feature curve P _{max-limit} (W)	Deviation of P _{measure} and P _{max-limit} (W)	Deviation within 10% P _n (Yes/No)
1.	50.00	15064.72			
2.	50.20	14945.43			
3.	50.25	14562.17	14642.52(98%)	84.35	Yes

TRF No. EN 50549-1:2019 Project No: 64.290.22.31030.01

Rev.: 00 Date: 2022-09-14 Page: 45 of 93 Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

http://www.tuv-sud.cn

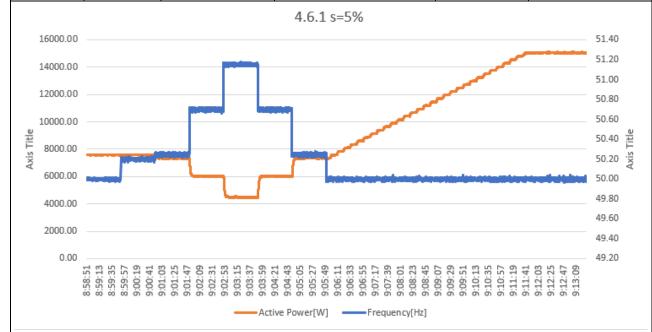
Clause	Requirement + Test		result –	result – Remark	
4.	50.70	11876.83	11956.34(80%)	79.51	Yes
5.	51.15	9213.69	9266.17(62%)	52.48	Yes
6.	50.70	11697.88	11956.34(80%)	258.46	Yes
7.	50.25	14455.13	14642.52(98%)	191.39	Yes
8.	50.00	15034.21			

Stage 2: TYPE 2 inverter DC input power is set to 50% of maximum active output power first. After the TYPE 2 inverter step into frequency range above 50.2Hz, the TYPE 2 inverter available input power is set to 100% of maximum active output. The output active power should not be changed. When the TYPE 2 inverter step back below the frequency 50.2Hz, the output active power should arise with a gradient of 10 % Pn/min.

 $P_M = 7582.78$, 10% $P_n = 1500$, intentional delay time: 0.4 s (should $\leq 2s$)

1 M - 1302	1 M = <u>7302.70</u> , 10701 H= <u>1300</u> , intentional delay time. <u>0.4</u> 3 (310did <23)						
Test sequence	Freq (Hz)	Measured active output power Pmeasure (W)	The calculated active output power as per feature curve P _{max-limit} (W)	Deviation of P _{measure} and P _{max-limit} (W)	Deviation within 10% P _n (Yes/No)		
1.	50.00	7581.68					
2.	50.20	7582.78					
3.	50.25	7335.76	7431.12(98%)	95.36	Yes		
4.	50.70	6065.14	6066.22(80%)	1.08	Yes		
5.	51.15	4524.11	4701.32(62%)	177.21	Yes		
6.	50.70	5976.58	6066.22(80%)	89.64	Yes		
7.	50.25	7283.27	7431.12(98%)	147.85	Yes		
8.	50.00	7324.44					
Test sequence	Freq (Hz)	Time after step back from 50.2Hz t (min)	Measured active output power P _{measure} (W)	ΔP Arise during next 1 min	Gradient of arising powerΔP/t under 10% P _{Emax} (Yes/No)		
9.	50.00	0.0min	7370.40	1436.7	Yes		
10.	50.00	0.5min	8085.10	1316.1	Yes		
11.	50.00	1.0min	8807.10	1344.9	Yes		
12.	50.00	1.5min	9401.20	1278.8	Yes		
13.	50.00	2.0min	10152.00	1297.0	Yes		
14.	50.00	2.5min	10680.00	1438.0	Yes		
15.	50.00	3.0min	11449.00	1302.0	Yes		
16.	50.00	3.5min	12118.00	1345.0	Yes		
17.	50.00	4.0min	12751.00	1287.0	Yes		

TRF No. EN 50549-1:2019 Project No: 64.290.22.31030.01


Rev.: 00 Date: 2022-09-14 Page: 46 of 93 Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

http://www.tuv-sud.cn

Clause	Requirement + Test	result – Remark	Verdict
--------	--------------------	-----------------	---------

18.	50.00	4.5min	13463.00	1332.0	Yes
19.	50.00	5.0min	14038.00	1004.0	Yes
20.	50.00	5.5min	14795.00	287.0	Yes
21.	50.00	6.0min	15042.00		
22.	50.00	6.5 min	15082.00		
23.	50.00	7.0 min	15064.00		

b) For Type 2 generation unit (PV or PV+ESS), over-frequency regulation, with active power reduction frequency start point=50.2Hz, gradient s=12%

Stage 1: TYPE 2 inverter DC input power is set to 100% of maximum active output power till the end of the test. The active power value shall not be deviated from the required value calculated from the feature curve for more than $10\% P_n$.

 $P_M = 15061.51$, 10% $P_n = 1500$, intentional delay time: 0.4 s (should \leq 2s)

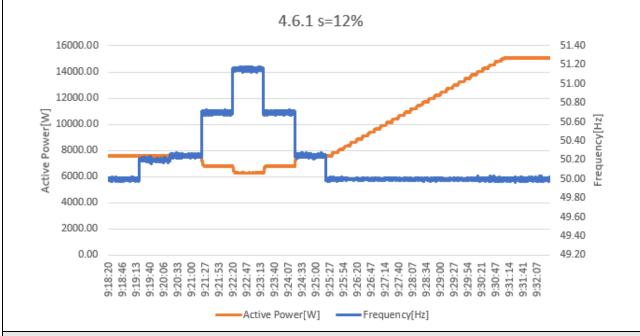
Test sequence	Freq (Hz)	Measured active output power Pmeasure (W)	The calculated active output power as per feature curve P _{max-limit} (W)	Deviation of P _{measure} and P _{max-limit} (W)	Deviation within 10% Pn (Yes/No)
1.	50.00	15062.42			Yes
2.	50.20	15061.51			Yes
3.	50.25	14817.16	14936.50(99.17%)	119.34	Yes
4.	50.70	13804.22	13803.87(91.65%)	0.35	Yes
5.	51.15	12532.02	12677.27(84.17%)	145.25	Yes

Rev.: 00 Date: 2022-09-14 Page: 47 of 93 Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

Clause	Requirement + Test	result – Remark	Verdict
--------	--------------------	-----------------	---------

6.	50.70	13729.10	13803.87(91.65%)	74.77	Yes
7.	50.25	14769.74	14936.50(99.17%)	166.76	Yes
8.	50.00	15051.40			

Stage 2: TYPE 2 inverter DC input power is set to 50% of maximum active output power first. After the TYPE 2 inverter step into frequency range above 50.2Hz, the TYPE 2 inverter available input power is set to 100% of maximum active output. The output active power should not be changed. When the TYPE 2 inverter step back below the frequency 50.2Hz, the output active power should arise with a gradient of 10 % Pn/min.


 $P_M = 7584.55$, 10% $P_n = 1500$, intentional delay time: 0.4 s (should \leq 2s)

Test sequence	Freq (Hz)	Measured active output power Pmeasure (W)	The calculated active output power as per feature curve P _{max-limit} (W)	Deviation of P _{measure} and P _{max-limit} (W)	Deviation within 10% P _n (Yes/No)
1.	50.00	7583.35			
2.	50.20	7584.55			
3.	50.25	7584.23	7521.60 (99.17%)	62.63	Yes
4.	50.70	6826.23	6951.24 (91.65%)	125.01	Yes
5.	51.15	6300.08	6383.92 (84.17%)	83.84	Yes
6.	50.70	6789.06	6951.24 (91.65%)	162.18	Yes
7.	50.25	7556.09	7521.60 (99.17%)	34.49	Yes
8.	50.00	7581.38		-	
Test sequence	Freq (Hz)	Time after step back from 50.2Hz t (min)	Measured active output power P _{measure} (W)	ΔP Arise during next 1 min	Gradient of arising powerΔP/t under 10% P _{Emax} (Yes/No)
9.	50.00	0.0min	7609.70	1484.0	Yes
10.	50.00	0.5min	8356.70	1302.9	Yes
11.	50.00	1.0min	9093.70	1304.3	Yes
12.	50.00	1.5min	9659.60	1277.4	Yes
13.	50.00	2.0min	10398.00	1325.0	Yes
14.	50.00	2.5min	10937.00	1364.0	Yes
15.	50.00	3.0min	11723.00	1272.0	Yes
16.	50.00	3.5min	12301.00	1429.0	Yes
17.	50.00	4.0min	12995.00	1288.0	Yes
18.	50.00	4.5min	13730.00	1285.0	Yes
19.	50.00	5.0min	14283.00	778.0	Yes

Clause	Requirement + Test	result – Remark	Verdict
--------	--------------------	-----------------	---------

20.	50.00	5.5min	15015.00	49.0	Yes
21.	50.00	6.0min	15061.00		-1
22.	50.00	6.5min	15064.00		
23.	50.00	7.0min	15027.00		

c) For Type 2 generation unit (PV or PV+ESS), over-frequency regulation, with active power reduction frequency start point=50.2Hz, gradient s=2%

Stage 1: TYPE 2 inverter DC input power is set to 100% of maximum active output power till the end of the test. The active power value shall not be deviated from the required value calculated from the feature curve $10\% P_n$.

 $P_M = 14689.27$, 10% $P_n = 1500$, intentional delay time: 0.2 s (should \leq 2s)

			· - ·	,	
Test sequence	Freq (Hz)	Measured active output power Pmeasure (W)	The calculated active output power as per feature curve P _{max-limit} (W)	Deviation of P _{measure} and P _{max-limit} (W)	Deviation within 10% P _n (Yes/No)
1.	50.00	15063.10		-	
2.	50.20	14689.27			
3.	50.25	13818.07	13954.81(95%)	136.74	Yes
4.	50.70	7521.35	7344.64(50%)	176.72	Yes
5.	51.15	967.54	734.46(5%)	233.08	Yes
6.	50.70	7069.93	7344.64(50%)	274.71	Yes
7.	50.25	13578.34	13954.81(95%)	376.47	Yes

Clause	Requirement + Test	result – Remark	Verdict
--------	--------------------	-----------------	---------

8. 50.00 14988.82 -- -- -- --

Stage 2: TYPE 2 inverter DC input power is set to 50% of maximum active output power first. After the TYPE 2 inverter step into frequency range above 50.2Hz, the TYPE 2 inverter available input power is set to 100% of maximum active output. The output active power should not be changed. When the TYPE 2 inverter step back below the frequency 50.2Hz, the output active power should arise with a gradient of 10 % Pn/min.

 $P_M = 7349.01$, 10% $P_n = 1500$, intentional delay time: 0.2 s (should \leq 2s)

$P_{\rm M} = 7349$	<u>.01</u> , 10% P	_{n=1500} , intentio	onal delay time: <u>0.2</u> s (shou	ıld ≤2s)	
Test sequence	Freq (Hz)	Measured active output power Pmeasure (W)	The calculated active output power as per feature curve P _{max-limit} (W)	Deviation of P _{measure} and P _{max-limit} (W)	Deviation within 10% P _n (Yes/No)
1.	50.00	7582.23			Yes
2.	50.20	7349.01		1	Yes
3.	50.25	6898.55	6981.36(95%)	83.01	Yes
4.	50.70	3784.35	3674.40(50%)	109.85	Yes
5.	51.15	453.22	367.440(5%)	85.77	Yes
6.	50.70	3589.04	3674.40(50%)	85.47	Yes
7.	50.25	6782.96	6981.36(95%)	198.60	Yes
8.	50.00	7108.20		1	
Test sequence	Freq (Hz)	Time after step back from 50.2Hz t (min)	Measured active output power P _{measure} (W)	ΔP Arise during next 1 min	Gradient of arising power∆P/t under 10% P _{Emax} (Yes/No)
9.	50.00	0.0min	7108.20	1436.8	Yes
10.	50.00	0.5min	7817.50	1343.7	Yes
11.	50.00	1.0min	8545.00	1335.9	Yes
12.	50.00	1.5min	9161.20	1259.8	Yes
13.	50.00	2.0min	9880.90	1308.1	Yes
14.	50.00	2.5min	10421.00	1401.0	Yes
15.	50.00	3.0min	11189.00	1306.0	Yes
16.	50.00	3.5min	11822.00	1396.0	Yes
17.	50.00	4.0min	12495.00	1270.0	Yes
18.	50.00	4.5min	13218.00	1348.0	Yes
19.	50.00	5.0min	13765.00	1283.0	Yes
20.	50.00	5.5min	14566.00	493.0	Yes
21.	50.00	6.0min	15048.00	11.0	Yes

Clause	Requiremen	t + Test		result – Remark		Verdict
22.	50.00	6.5min	15059.00	-	-	
23.	50.00	7.0min	15059.00	-	-	
			4.6.1 s=2%	·		
[M]	16000 14000 12000 10000 8000 4000 2000 0 18:46:52 748 18:46:50 744 18:46:48 737 0 0 0 100000 10000 10000 10000 10000 10000 10000 10000 10000 100000 100000 100000 10000 10000 10000 10000 10000 10000 100000 10000 100000 100000 100000 100000 100000 100000 100		18:51:28 885 18:51:56 870 18:52:24 899 [A] 18:53:20 879 18:53:48 864 18:54:48 863		51.4 51.2 51.8 50.8 50.6 50.4 50.2 50.2 50.8 49.8 49.6 49.4 49.4	Frequency[Hz]
Suppleme	entary informat	ion: N/A				

4.7.2.2	Capabili	ities							Р		
S _{max} (VA)			16732	2.4	P _{max} (V	P _{max} (W)			15138.7		
			Case A: T	ested at I	Nominal	voltage 1	.00Un				
P/ S _{Emax} (%)	10	20	30	40	50	60	70	80	90	100	
Q set value generation(VA)	7986	7986	7986	7986	7986	7986	7986	7986	7986	7986	
Tested cosφ	0.200 ov	0.369 ov	0.493 ov	0.608 ov	0.695 ov	0.759 ov	0.806 ov	0.837 ov	0.865 ov	0.884 ov	
Active power P (W)	1601.6	3114.5	4432.4	5994.5	7557.5	9112.6	10661. 6	11952. 2	13502. 8	14796. 5	
Reactive power Q(VA)	7846.3	7833.1	7825.9	7824.1	7824.8	7829.1	7832.9	7817.5	7817.3	7812.3	
Apparent power S (VA)	8008.1	8429.9	8994.0	9856.6	10878. 6	12014. 0	13229. 8	14281. 9	15602. 5	16732. 4	
Deviation within 2%	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	

TRF No. EN 50549-1:2019 Project No: 64.290.22.31030.01 Rev.: 00

Date: 2022-09-14 Page: 51 of 93 Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

http://www.tuv-sud.cn

Clause	Requiremer	nt + Test				result –	Remark			Verdict
Smax						T	Ι		1	Ī
(Yes/No)										
P/ S _{Emax} (%	5) 10	20	30	40	50	60	70	80	90	100
Q set value generation(Var)		0	0	0	0	0	0	0	0	0
Tested cos	φ 0.995 ov	0.998 ov	0.999 ov							
Active power P (W	V) 1622.6	2923.9	4484.4	6046.0	7606.3	9162.2	10719. 3	12015. 9	13571. 5	15127. 0
Reactive power Q(Var)	157.5	149.6	110.1	91.5	86.0	84.4	52.1	21.1	13.2	49.4
Apparent power S (VA)	1630.4	2928.2	4486.9	6047.7	7607.8	9163.9	10720. 9	12017. 5	13573. 0	15128. 4
Deviation within 2% S _{max} (Yes/No)	Yes									
P/ S _{Emax} (%	5) 10	20	30	40	50	60	70	80	90	100
Q set value generation(Var)		-7986	-7986	-7986	-7986	-7986	-7986	-7986	-7986	-7986
Tested cos	φ 0.207 un	0.356 un	0.503 un	0.617 un	0.701 un	0.764 un	0.803 un	0.840 un	0.868 un	0.883 un
Active power P (W	1634.5 V) 0	2929.2 1	4482.5 0	6035.6 1	7579.9 5	9139.0 5	10436. 1	11991. 7	13540. 8	14567. 5
Reactive power Q(Var)	- 7708.3 4	- 7696.3 7	- 7697.3 5	- 7705.8 8	- 7713.2 1	- 7726.1 6	- 7736.7 3	- 7749.7 3	- 7760.5 3	- 7760.7 0
Apparent power S (VA)	7879.7 9	8235.0 1	8907.4 9	9788.3 0	10814. 40	11967. 37	12991. 22	14278. 12	15607. 23	16505. 96
Deviation within 2% S _{max} (Yes/No)	Yes									
D/C :		(Case B Te		Nominal v	oltage 1.				
P/ S _{Emax} (%	p)			Max.			Max.		Max.	

Page: 52 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

http://www.tuv-sud.cn

Clause Requirement + Test		result – Remark	Verdict
Q set value generation(VA)	7986	0	-7986
Tested cosφ	0.884 ov		0.882 un
Active power P (W)		0.999 ov	
· , ,	14822.35	15138.71	14579.40
Reactive power Q(VA)	7854.66	149.9	-7774.99
Apparent power S (VA)	16775.07	15142.45	16523.19
Deviation within 2% S _{max} (Yes/No)	Yes	Yes	Yes
Coop	C. Tastad at Naminal	voltage 1 051 in	
P/ S _{Emax} (%)	C: Tested at Nominal Max.	Max.	Max.
Q set value generation(VA)			
. , ,	7986	0	-7986
Tested cosφ	0.885 ov	0.999 ov	0.881 un
Active power P (W)	14826.12	15101.63	14581.56
Reactive power Q(VA)	7812.54	104.6	-7819.24
Apparent power S (VA)	16758.78	15120.71	16545.96
Deviation within 2% S _{max} (Yes/No)	Yes	Yes	Yes
	D: Tested at Nominal		
P/ S _{Emax} (%)	Max.	Max.	Max.
Q set value generation(VA)	7986	0	-7986
Tested cosφ	0.873 ov	0.999 ov	0.868 un
Active power P (W)	13623.3	14606.1	13616.0
Reactive power Q(VA)	7612.6	135.5	-7783.3
Apparent power S (VA)	15606.2	14608.8	15683.7
Deviation within 2% S _{max} (Yes/No)	Yes	Yes	Yes
Case	E: Tested at Nominal	_	I
P/ S _{Emax} (%)	Max.	Max.	Max.
Q set value generation(VA)	7986	0	-7986
Tested cosφ	0.880 ov	0.998 ov	0.878 un

Page: 53 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

http://www.tuv-sud.cn

Clause Re	equiremen	nt + Test				result –	Remark				Verdict
			1		_						
Active power	P (W)			13086.	2	13828.6			13091.4		
Reactive power Q(VA)				7068.0)	1	61.6			-7124.	7
Apparent power S (VA)				14873.	1	13	831.2			14904.7	
Deviation within 2% S _{max} (Yes/No)				Yes			Yes			Yes	
		C	asa F· T	ested at N	lominal v	voltage 0	851 In*				
P/ S _{Emax} (%)			4301.1	Max.	- Cillinai		Max.			Max.	
Q set value g	eneration	(\/Δ)		7986			0			-7986	
Tested cosφ	CHORAGON	(• / • /				0.4					
•	D (M)			0.879 o			998 ov			0.876 เ	
Active power			4	13055.9				12309.2			
Reactive power Q(VA) 6813.7					,	179.3				-6764.8	
Apparent power S (VA)				14289.	7	13058.5			14045	.7	
Deviation within 2% S _{max} (Yes/No)				Yes		Yes			Yes		
	T	C	Case A: 1	ested at	Nominal	voltage 1.	00Un	1			
P/ S _{Emax} (%)	10	20	30	40	50	60	70	8	0	90	100
Cosφ set value generation	0.900 ov		000 V	0.900 ov	0.900 ov						
Tested cosφ	0.903 ov	0.906 ov	0.906 ov	0.905 ov	0.900 ov	0.904 ov	0.906 ov		08 V	0.899 ov	0.907 ov
Active power P (W)	1338.9	2907.7	4467.3	6021.4	7570.8	9121.9	10415. 4	119)64.)	13502. 9	14827. 55
Reactive power Q(VA)	636.1	1354.5	2084.5	2832.9	3673.1	4326.1	4875.9	553	32.9	6589.9	6887.6
Apparent power S (VA)	1482.3	3207.8	4929.7	6654.	8414.9 1	10095. 8	11500. 4	131 5	82. 5	15025. 2	16349. 3
Deviation within 2% S _{max} (Yes/No)	Yes	Ye	es	Yes	Yes						
P/ S _{Emax} (%)	10	20	30	40	50	60	70	8	0	90	100

Page: 54 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

Clause	Requi	iremen	t + Test					result -	Remark				Verdict
	1							1	Ι	I		T	
Cos set value generation		.900 un	0.900 un	0.90 un		0.900 un	0.900 un	0.900 un	0.900 un		900 In	0.900 un	0.900 un
Tested cos	•	.909 un	0.908 un	0.90 un		0.905 un	0.899 un	0.909 un	0.907 un		909 In	0.908 un	0.907 un
Active power P (V	N) 16	622.4	2925.8 9	4483 5	3.2	6042.5 2	7591.5 2	9154.5	10698. 5		990. 8	13537. 9	14827. 5
Reactive power Q(VA)	-6	614.6	-1347.4	-2087	7.4	-2845.9	-3707.2	-4192.3	-4963.2	-54	95.4	-6256.0	-6887.5
Apparent power S (VA)	17	784.3	3221.3	4945	5.4	6679.2	8448.4	10068. 9	11793. 8		190. 2	14913. 6	16349. 3
Deviation within 2% S _{max} (Yes/No)	,	Yes	Yes	Ye	S	Yes	Yes	Yes	Yes	Υ	es	Yes	Yes
			(Case E	3 Te	ested at N	lominal v	voltage 1.	10Un	I			
P/ S _{Emax} (%)					Max.		ı	Max.			Max.		
Cosφ set value generation 0.900 ov					1	.000			0.900 ι	ın			
Tested cos	sφ					0.899		C).999			0.905	5
Active pow	ver P (W)			15081.00		15080.45			14813.72			
Reactive p	ower (Q(VA)			7347.89		713.55			-6976.31			
Apparent p	ower	S (VA)	1			16775.9	5	15097.39			16374.55		
Deviation v	within :	2% S _m	ax (Yes/N	0)		Yes		Yes			Yes		
				`asa (· T	ostad at l	Mominal	voltage 1	05Un				
P/ S _{Emax} (%	(6)			ase C	·. I'	Max.	Volima		Max.			Max.	
Cosφ set v		genera	tion			0.900 o	V	1	.000			0.900 ເ	ın
Tested cos	 . φ					0.900).999			0.902	
Active pow	Active power P (W) 15083.05				15078.37				14806.	78			
Reactive power Q(VA) 7298.40						-7076.3	37						
Apparent p	oower	S (VA))			16756.1	8				16410.9	93	
Deviation	within :	2% Sm	ax (Yes/N	0)		Yes		Yes		Yes			

Page: 55 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

http://www.tuv-sud.cn

lause F	Requirement + Test	result – Remark	Verdict	
lause F	Requirement + Test	result – Remark	Ver	dict

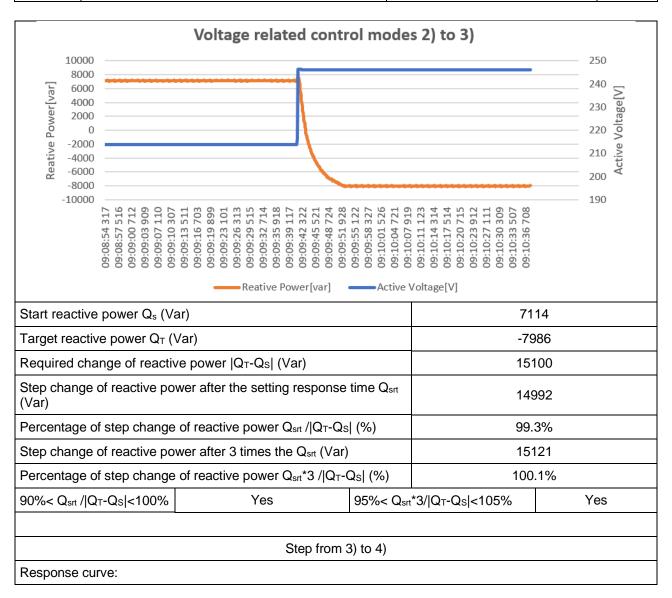
Case D	: Tested at Nominal	voltage 0.95Un*	
P/ S _{Emax} (%)	Max.	Max.	Max.
Cosφ set value generation	0.900 ov	1.000	0.900 un
Tested cosφ	0.901	0.999	0.901
Active power P (W)	14255.88	14269.79	14264.64
Reactive power Q(VA)	6846.08	496.14	-6885.67
Apparent power S (VA)	15814.62	14283.25	15839.69
Deviation within 2% S _{max} (Yes/No)	Yes	Yes	Yes
Case E	: Tested at Nominal	voltage 0.90Un*	
P/ S _{Emax} (%)	Max.	Max.	Max.
Cosφ set value generation	0.900 ov	1.000	0.900 un
Tested cosφ	0.902	0.999	0.900
Active power P (W)	13484.94	13497.59	13490.37
Reactive power Q(VA)	6461.06	546.94	-6537.08
Apparent power S (VA)	14952.99	13512.33	14990.87
Deviation within 2% S _{max} (Yes/No)	Yes	Yes	Yes
Case F	: Tested at Nominal	voltage 0.85Un*	
P/ S _{Emax} (%)	Max.	Max.	Max.
Cosφ set value generation	0.900 ov	1.000	0.900 un
Tested cosφ	0.902 ov	0.999 ov	0.899 un
Active power P (W)	12715.75	12725.86	12720.57
Reactive power Q(VA)	6077.23	481.34	-6189.94
Apparent power S (VA)	14093.46	12741.81	14146.81
Deviation within 2% S _{max} (Yes/No)	Yes	Yes	Yes

TRF No. EN 50549-1:2019 Project No: 64.290.22.31030.01 Rev.: 00

Rev.: 00 Date: 2022-09-14 Page: 56 of 93 Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

http://www.tuv-sud.cn

Clause	Requirement + Test	result – Remark	Verdict
--------	--------------------	-----------------	---------


4.7.2.3.3 Voltage related control modes The dynamics of the Response control time Set fixed P=0.5 S_{Emax}, the setting response time is 10 s (the setting should within the range of 3s to 60s), change the voltage by steps: 1) 1.00 Un, stable operation 2) 0.93 Un, 30s 3) 1.07 Un, 30s 4) 1.00 Un, 30s Step from 1) to 2)* Response curve: Voltage related control modes 1) to 2) 235 8000 7000 230 6000 Reative Power[var] 5000 4000 3000 2000 1000 210 09:08:44 400 09:08:48 409 09:08:56 419 09:09:00 412 09:08:20 406 09:08:24 406 09:08:28 404 09:09:24 405 09:09:28 407 398 411 09:07:56 401 93:08:00 09:08:16 404 09:08:36 401 09:08:40 398 09:09:16 404 39:07:44 385 09:08:48 4 09:08:52 4 09:08:04 09:08:12 80:60 32 20 09:07:48 39:07:52 90:80:60 09:09:04 09:09:12 39:09:36 :80:60 :60:60 Reative Power[var] Active Voltage[V] Start reactive power Qs (Var) 279 7986 Target reactive power Q_T (Var) Required change of reactive power $|Q_T-Q_S|$ (Var) 7707 Step change of reactive power after the setting response time Q_{srt} 7107 (Var) Percentage of step change of reactive power Q_{srt} /|Q_T-Q_S| (%) 92.2% Step change of reactive power after 3 times the Q_{srt} (Var) 7407 Percentage of step change of reactive power Q_{srt}*3 /|Q_T-Q_S| (%) 96.1% $90\% < Q_{srt} / |Q_T - Q_S| < 100\%$ Yes 95% < Q_{srt}*3/|Q_T-Q_S|<105% Yes Step from 2) to 3)

Response curve:

Rev.: 00 Date: 2022-09-14 Page: 57 of 93 Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478


Clause	Requirement + Test	result – Remark	Verdict
--------	--------------------	-----------------	---------

Rev.: 00 Date: 2022-09-14 Page: 58 of 93 Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

Clause	Requirement + Test	result – Remark	Verdict
Oladoo	Troquironioni Tool	roodit romant	v Oi aid

TRF No. EN 50549-1:2019 Project No: 64.290.22.31030.01

Rev.: 00 Date: 2022-09-14 Page: 59 of 93 Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

http://www.tuv-sud.cn

0.93 Un 213.8 (213.9) 7574.8 10870.5 0.697 7796.7 7986.0 189.3 213.9 (213.9) 218.5 (213.9) 7588.0 8614.1 0.881 4064.3 3993.0 71.3 218.6 (223.1) 223.2 (223.2) 7430.9 7435.7 0.999 87.4 0 87.4 223.2 (223.2) 223.0 (223.2) 7555.4 7560.0 0.999 86.6 0 86.6 230.4 (223.2) 230.5 (223.2) 7555.4 7560.0 0.999 86.6 0 86.6 230.5 (223.2) 236.8 (223.9) 7558.5 0.999 -85.6 0 86.6 236.8 (223.9) 241.5 (223.2) 7575.3 (223.2) 103.1 (223.2) -8018.3 (223.2) -3993.0 (223.2) 1.07 Un (246.2 (223.2) 7575.3 (223.2) 11031.1 (223.2) 0.687 (223.2) -8063.9 (223.2) -7986.0 (223.2) 1.07 Un (246.2 (223.2) 7576.2 (223.2) 11035.8 (223.2) -8024.1 (223.2) -3993.0 (223.2) 85.2 (223.2) 1.05 Un (241.5 (223.2) 236.8 (223.2) 1326.2 (223.2)	Clause	Requirement +	Test		re	esult – Remark		Verdict	
0.93 Un 213.8 213.9 7574.8 10870.5 0.697 7796.7 7986.0 189.3 0.95 Un 218.5 218.6 7588.0 8614.1 0.881 4064.3 3993.0 71.3 223.1 223.2 223.1 0.97 Un 223.2 7430.9 7435.7 0.999 87.4 0 87.4 1.00 Un 230.4 230.5 7555.4 7560.0 0.999 86.6 0 86.6 1.03 Un 236.8 236.9 7553.9 7558.5 0.999 -85.6 0 85.6 1.05 Un 241.5 246.2 7587.3 8623.9 0.880 -4096.5 -3993.0 103.5 1.07 Un 246.2 250.9 7577.0 11065.2 0.687 -8018.3 -7986.0 32.3 1.07 Un 246.2 246.2 7576.2 11035.8 0.687 -8024.1 -7986.0 77.9 1.05 Un 241.5 241.6 7585.8 8612.7 0.881 -4078.2 -3993.0 85.2 1.03 Un <		213.8							
213.9 218.5 0.95 Un 218.5 218.6 218.6 223.1 0.97 Un 223.2 230.4 1.00 Un 230.4 230.5 236.8 236.8 236.9 241.5 1.07 Un 246.2 246.2 1.09 Un 250.8 250.7 1.09 Un 250.8 250.7 1.09 Un 250.8 250.9 246.2 1.07 Un 246.2 250.7 1.09 Un 246.2 250.9 246.2 1.07 Un 246.2 246.2 1.09 Un 250.8 250.9 246.2 1.09 Un 250.8 250.9 246.2 1.07 Un 246.2 246.2 246.2 241.6 246.2 241.6 246.2 241.6 246.2 241.6 246.2 241.6 246.2 241.6 246.2 241.6 236.8 1.03 Un 236.8 7551.7 7557.2 0.999 -78.1 0 78.1	0.03 Lln		7574.8	10870.5	0.607	7796 7	7086 N	180.3	
0.95 Un 218.5 218.6 7588.0 8614.1 0.881 4064.3 3993.0 71.3 0.97 Un 223.1 223.2 7430.9 7435.7 0.999 87.4 0 87.4 1.00 Un 230.4 230.5 7555.4 7560.0 0.999 86.6 0 86.6 1.03 Un 236.8 236.9 7553.9 7558.5 0.999 -85.6 0 85.6 1.05 Un 241.5 241.6 7587.3 8623.9 0.880 -4096.5 -3993.0 103.5 1.07 Un 246.2 250.7 7575.3 11031.1 0.687 -8018.3 -7986.0 77.9 250.9 250.9 246.2 246.2 7576.2 11035.8 0.687 -8024.1 -7986.0 38.1 1.05 Un 241.5 246.2 7585.8 8612.7 0.881 -4078.2 -3993.0 85.2 1.05 Un 241.5 241.6 7585.8 8612.7 0.881 -4078.2 -3993.0 85.2	0.93 011		7374.0	10070.5	0.097	7790.7	7 900.0	109.5	
0.95 Un 218.5 7588.0 8614.1 0.881 4064.3 3993.0 71.3 218.6 223.1 0.97 Un 223.2 7430.9 7435.7 0.999 87.4 0 87.4 1.00 Un 230.4 7555.4 7560.0 0.999 86.6 0 86.6 230.5 236.8 7553.9 7558.5 0.999 -85.6 0 85.6 1.03 Un 236.8 7553.9 7558.5 0.999 -85.6 0 85.6 1.05 Un 241.5 7587.3 8623.9 0.880 -4096.5 -3993.0 103.5 1.07 Un 246.2 7575.3 11031.1 0.687 -8018.3 -7986.0 32.3 250.7 1.09 Un 250.8 7577.0 11065.2 0.685 -8063.9 -7986.0 77.9 1.07 Un 246.2 7576.2 11035.8 0.687 -8024.1 -7986.0 38.1 1.05 Un 241.5 7585.8 8612.7 0.									
218.6 223.1 223.2 7430.9 7435.7 0.999 87.4 0 87.4	0.05 Un		7500.0	06144	0.004	4064.2	2002.0	74.0	
0.97 Un 223.1 223.2 223.2 230.4 1.00 Un 7430.9 223.2 230.4 230.5 7555.4 7560.0 230.5 0.999 86.6 87.4 0 0 87.4 86.6 1.00 Un 230.4 230.5 230.5 7555.4 7553.9 7560.0 7558.5 0.999 9 86.6 0 0 86.6 86.6 1.03 Un 236.8 236.9 241.5 241.6 7587.3 8623.9 241.6 0.880 240.2 241.6 -4096.5 240.2 246.2 246.2 -3993.0 246.2 250.9 250.9 250.9 246.2 1.07 Un 11065.2 246.2	0.95 011		7500.0	0014.1	0.001	4004.3	3993.0	71.3	
0.97 Un 223.2 7430.9 7435.7 0.999 87.4 0 87.4 1.00 Un 230.4 7555.4 7560.0 0.999 86.6 0 86.6 230.5 236.8 7553.9 7558.5 0.999 -85.6 0 85.6 236.9 241.5 7587.3 8623.9 0.880 -4096.5 -3993.0 103.5 1.05 Un 246.2 7575.3 11031.1 0.687 -8018.3 -7986.0 32.3 246.2 250.7 1.09 Un 250.8 7577.0 11065.2 0.685 -8063.9 -7986.0 77.9 1.07 Un 246.2 7576.2 11035.8 0.687 -8024.1 -7986.0 38.1 1.05 Un 241.5 7585.8 8612.7 0.881 -4078.2 -3993.0 85.2 1.03 Un 236.8 7551.7 7557.2 0.999 -78.1 0 78.1									
1.00 Un	0.07.11		7400.0	7.405.7		07.4		07.4	
1.00 Un	0.97 Un		7430.9	7435.7	0.999	87.4	0	87.4	
1.00 Un 230.4 7555.4 7560.0 0.999 86.6 0 86.6 230.5 236.8 7553.9 7558.5 0.999 -85.6 0 85.6 1.03 Un 236.8 7553.9 7558.5 0.999 -85.6 0 85.6 1.05 Un 241.5 7587.3 8623.9 0.880 -4096.5 -3993.0 103.5 1.07 Un 246.2 7575.3 11031.1 0.687 -8018.3 -7986.0 32.3 1.09 Un 250.8 7577.0 11065.2 0.685 -8063.9 -7986.0 77.9 1.07 Un 246.2 7576.2 11035.8 0.687 -8024.1 -7986.0 38.1 1.05 Un 241.5 7585.8 8612.7 0.881 -4078.2 -3993.0 85.2 1.03 Un 236.8 7551.7 7557.2 0.999 -78.1 0 78.1									
230.5 236.8 1.03 Un 236.8 236.9 241.5 1.05 Un 241.5 241.6 246.2 1.07 Un 246.2 250.7 1.09 Un 250.8 250.9 246.2 1.07 Un 246.2 246.2 246.2 246.2 1.07 Un 246.2 24									
1.03 Un 236.8 236.9 7553.9 7558.5 0.999 -85.6 0 85.6 1.05 Un 241.5 241.6 7587.3 8623.9 0.880 -4096.5 -3993.0 103.5 1.07 Un 246.2 246.2 7575.3 11031.1 0.687 -8018.3 -7986.0 32.3 1.09 Un 250.8 250.9 7577.0 11065.2 0.685 -8063.9 -7986.0 77.9 1.07 Un 246.2 246.2 7576.2 11035.8 0.687 -8024.1 -7986.0 38.1 1.05 Un 241.5 241.6 7585.8 8612.7 0.881 -4078.2 -3993.0 85.2 1.03 Un 236.8 236.8 7551.7 7557.2 0.999 -78.1 0 78.1	1.00 Un		7555.4	7560.0	0.999	86.6	0	86.6	
1.03 Un 236.8 7553.9 7558.5 0.999 -85.6 0 85.6 236.9 241.5 7587.3 8623.9 0.880 -4096.5 -3993.0 103.5 241.6 246.2 7575.3 11031.1 0.687 -8018.3 -7986.0 32.3 1.07 Un 246.2 7577.0 11065.2 0.685 -8063.9 -7986.0 77.9 1.07 Un 246.2 7576.2 11035.8 0.687 -8024.1 -7986.0 38.1 1.05 Un 241.5 7585.8 8612.7 0.881 -4078.2 -3993.0 85.2 1.03 Un 236.8 7551.7 7557.2 0.999 -78.1 0 78.1									
236.9 241.5 7587.3 8623.9 0.880 -4096.5 -3993.0 103.5									
1.05 Un 241.5 7587.3 8623.9 0.880 -4096.5 -3993.0 103.5 241.6 246.2 7575.3 11031.1 0.687 -8018.3 -7986.0 32.3 1.07 Un 246.2 7577.0 11065.2 0.685 -8063.9 -7986.0 77.9 1.09 Un 250.8 7577.0 11065.2 0.685 -8063.9 -7986.0 77.9 250.9 246.2 7576.2 11035.8 0.687 -8024.1 -7986.0 38.1 1.07 Un 246.2 7576.2 11035.8 0.687 -8024.1 -7986.0 38.1 1.05 Un 241.5 7585.8 8612.7 0.881 -4078.2 -3993.0 85.2 241.6 236.8 7551.7 7557.2 0.999 -78.1 0 78.1	1.03 Un		7553.9	7558.5	0.999	-85.6	0	85.6	
1.05 Un 241.5 7587.3 8623.9 0.880 -4096.5 -3993.0 103.5 241.6 246.2 7575.3 11031.1 0.687 -8018.3 -7986.0 32.3 1.09 Un 250.7 1.09 Un 250.8 7577.0 11065.2 0.685 -8063.9 -7986.0 77.9 250.9 246.2 7576.2 11035.8 0.687 -8024.1 -7986.0 38.1 1.07 Un 246.2 7576.2 11035.8 0.687 -8024.1 -7986.0 38.1 1.05 Un 241.5 7585.8 8612.7 0.881 -4078.2 -3993.0 85.2 241.6 236.8 7551.7 7557.2 0.999 -78.1 0 78.1		236.9							
241.6 246.2 1.07 Un		241.5							
1.07 Un	1.05 Un	241.5	7587.3	8623.9	0.880	-4096.5	-3993.0	103.5	
1.07 Un 246.2 7575.3 11031.1 0.687 -8018.3 -7986.0 32.3 246.2 250.7 1.09 Un 250.8 7577.0 11065.2 0.685 -8063.9 -7986.0 77.9 250.9 246.2 7576.2 11035.8 0.687 -8024.1 -7986.0 38.1 1.07 Un 246.2 7576.2 11035.8 0.687 -8024.1 -7986.0 38.1 1.05 Un 241.5 7585.8 8612.7 0.881 -4078.2 -3993.0 85.2 236.8 236.8 7551.7 7557.2 0.999 -78.1 0 78.1		241.6							
246.2 1.09 Un 250.8 7577.0 11065.2 0.685 -8063.9 -7986.0 77.9 250.9 1.07 Un 246.2 7576.2 11035.8 0.687 -8024.1 -7986.0 38.1 241.5 1.05 Un 241.5 7585.8 8612.7 0.881 -4078.2 -3993.0 85.2 1.03 Un 236.8 7551.7 7557.2 0.999 -78.1 0 78.1		246.2	246.2						
1.09 Un 250.7 250.8 250.9 7577.0 11065.2 11065.2 0.685 -8063.9 -8063.9 -7986.0 77.9 1.07 Un 246.2 246.2 7576.2 246.2 11035.8 246.2 0.687 241.5 -8024.1 -8024.1 -7986.0 38.1 1.05 Un 241.5 241.6 7585.8 241.6 8612.7 236.8 0.881 7551.7 -4078.2 7557.2 -3993.0 7557.2 85.2	1.07 Un	246.2	7575.3	11031.1	0.687	-8018.3	-7986.0	32.3	
1.09 Un 250.8 7577.0 11065.2 0.685 -8063.9 -7986.0 77.9 250.9 246.2 7576.2 11035.8 0.687 -8024.1 -7986.0 38.1 1.07 Un 246.2 7576.2 11035.8 0.687 -8024.1 -7986.0 38.1 1.05 Un 241.5 7585.8 8612.7 0.881 -4078.2 -3993.0 85.2 1.03 Un 236.8 7551.7 7557.2 0.999 -78.1 0 78.1		246.2							
250.9 1.07 Un 246.2 1.07 Un 246.2 246.2 1.05 Un 241.5 241.6 236.8 1.03 Un 250.9 11035.8 0.687 -8024.1 -7986.0 38.1 -4078.2 -3993.0 85.2 1.03 Un 236.8 7551.7 7557.2 0.999 -78.1 0 78.1		250.7							
1.07 Un	1.09 Un	250.8	7577.0	11065.2	0.685	-8063.9	-7986.0	77.9	
1.07 Un 246.2 7576.2 11035.8 0.687 -8024.1 -7986.0 38.1 246.2 241.5 241.5 7585.8 8612.7 0.881 -4078.2 -3993.0 85.2 241.6 236.8 7551.7 7557.2 0.999 -78.1 0 78.1		250.9							
246.2 1.05 Un 241.5 7585.8 8612.7 0.881 -4078.2 -3993.0 85.2 241.6 236.8 1.03 Un 236.8 7551.7 7557.2 0.999 -78.1 0 78.1		246.2							
1.05 Un 241.5 241.6 7585.8 8612.7 0.881 -4078.2 -3993.0 85.2 236.8 1.03 Un 236.8 7551.7 7557.2 0.999 -78.1 0 78.1	1.07 Un	246.2	7576.2	11035.8	0.687	-8024.1	-7986.0	38.1	
1.05 Un 241.5 7585.8 8612.7 0.881 -4078.2 -3993.0 85.2 241.6 236.8 1.03 Un 236.8 7551.7 7557.2 0.999 -78.1 0 78.1		246.2							
241.6 236.8 1.03 Un 236.8 7551.7 7557.2 0.999 -78.1 0 78.1		241.5							
236.8 1.03 Un 236.8 7551.7 7557.2 0.999 -78.1 0 78.1	1.05 Un	241.5	7585.8	8612.7	0.881	-4078.2	-3993.0	85.2	
1.03 Un 236.8 7551.7 7557.2 0.999 -78.1 0 78.1		241.6							
		236.8							
	1.03 Un		7551.7	7557.2	0.999	-78.1	0	78.1	
		236.9							

Page: 60 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

	Clause Requirement + Test result - Remark Verd										Verdict		
		230.5											
1.00 Un		230.5	7	565.4	75	70.1	0.99	99	88.3		0		88.3
1.00 011		230.6				70.1	0.00	,0	00.0		Ü		00.0
		223.1											
0.97 Un		223.2	74	428.1	74	33.1	0.99	99	-88.6		0		88.6
		223.2											
		218.5											
0.95 Un*		218.5	7	586.8	85	56.1	0.88	37	-3954.7	7	3993.0		38.3
		218.6											
		213.8											
0.93 Un*		213.9	7	576.2	108	359.1	0.69	98	-7778.9	9	7986.0		207.1
		213.9											
		209.3											
0.91 Un*		209.3		580.5	108	388.1	0.69	96	-7815.7	7	7986.0		170.3
		209.4											
Limit the r	eactiv	e power	at lo	w active	powe	er							
						Qr	min						
P/P _{SMAX} Set-poi		Vac [V] s		P/P _{SMA} Measu		Vac meas	c [V] sured		(Var) asured		[Var] pected	(< ±	ΔQ ± 2 % Sn)
< 20 %	6	1.03 V	n	1964	.0	236.8		-68.6			0		68.6
< 20 %	o o	1.05 V	n	1963	3.6 24		1.5		-69.5		0		69.5
<20 % -> 3	30 %	1.05 V	n	3679	.9	24	1.4	3	959.1	-3	993.0		33.9
50 %		1.05 V	n	7551	.4	24	1.5	4	073.3	-3	993.0		80.3
100 %)	1.05 V	n	15102	2.4	24	1.4	3	977.9	-3	993.0		15.1
100 %)	1.07 V	n	14604.4		24	6.1	8001.8		-7	986.0		15.8
100 % -> 1	10 %	1.07 V	n	7593	.5	24	6.2	8030.2		-7986.0			44.2
P ≤ 5 %	6	1.07 V	n	1359	.2	24	6.1		-48.4		0		48.4

Page: 61 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

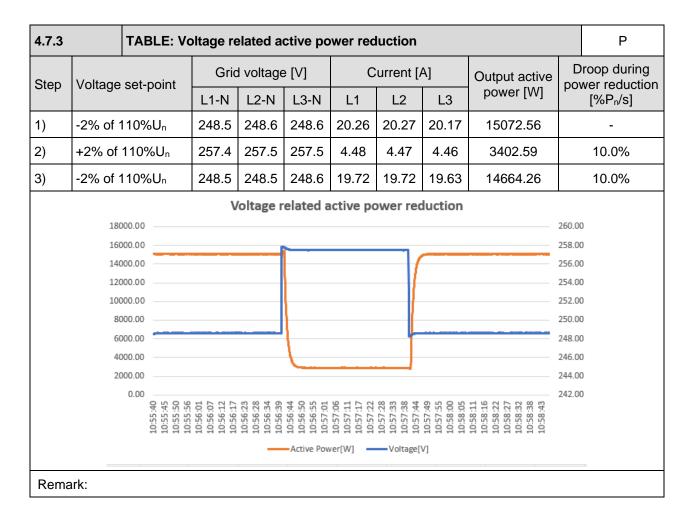
Qmax

Clause	Requirement + Test		result – Remark	Verdict
--------	--------------------	--	-----------------	---------

P/P _{SMAX} [%] Set-point	Vac [V] set- point	P/P _{SMAX} [%] Measured	Vac [V] measured	Q [Var] measured	Q [Var] expected	Δ Q (< ± 2 % Sn)
< 20 %	0.97 Vn*	2077.1	223.1	76.2	0	76.2
< 20 %	0.95 Vn*	2045.6	218.5	70.6	0	70.6
<20 % -> 30 %	0.95 Vn*	3701.6	218.6	3968.1	3993.0	24.9
50 %	0.95 Vn*	7583.5	218.6	3976.7	3993.0	16.3
100 %	0.95 Vn*	14585.0	218.5	4032.5	3993.0	39.5
100 %	0.93 Vn*	12766.0	213.8	7984.6	7986.0	2.6
100 % -> 10 %	0.93 Vn*	7596.1	213.6	7987.4	7986.0	1.4
P≤ 5 %	0.93 Vn*	1409.8	214.0	51.1	0	51.1

Remark "*":Low voltage cannot reach full power due to maximum current limit. Lock-in value setting: 20%Pn, Lock-out value setting: 5%Pn

4.7.2.3.4	4.7.2.3.4 Power related Control mode:										
Maximal activ	e power P _{Ema}	x with the test	ed displaceme	ent factor (W)			14	788.01			
Percentage of output active power P/P _{Emax} (%)	Measured active power P (W)	Measured apparent power S (VA)	Measured displaceme nt factor cosφ	Measured reactive power Q(Var)	facto	Displacement factor as to feature curve		actor as to		ether the accuracy offill according to clause 4.7.2.2 (± 2% Smax)	
Set point 1: P	=0 P _{Emax} , cosq	p=1									
Set point 2: P	=0.5 P _{Emax} , co	sφ=1									
Set point 3: P	=1 P _{Emax} , cos	φ=0.9 or 0.95	under-excited			<u> </u>					
10%	1557.82	1569.29	0.993 ov	189.34	1.	1.000		Yes			
20%	3044.25	3066.83	0.993 ov	371.25	1.	.000		Yes			
30%	4457.42	4486.68	0.993 ov	511.38	1.	.000		Yes			
40%	6025.41	6047.17	0.996 ov	512.18	1.	.000		Yes			
50%	7575.46	7593.21	0.998 ov	518.47	1.	.000		Yes			
60%	9127.98	9299.88	0.982 un	-1779.46	0.9	80un		Yes			
70%	10678.50	11094.17	0.963 un	-3008.10	0.9	60un		Yes			
80%	11962.59	12690.34	0.943 un	-4235.39	0.9	40un		Yes			
90%	13505.08	14646.03	0.922 un	-5667.09	0.9	20un		Yes			
100%	14788.01	16404.91	0.901 un	-7101.54	0.9	00un		Yes			


TRF No. EN 50549-1:2019 Project No: 64.290.22.31030.01

Rev.: 00 Date: 2022-09-14 Page: 62 of 93 Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

http://www.tuv-sud.cn

Clause	Requirement + T	est		res	sult – Remark		Verdict
90%	13505.06	14646.10	0.922 un	-5667.33	3 0.920un	Yes	
80%	11962.83	12691.12	0.943 un	-4237.10	0.940un	Yes	
70%	10676.67	11092.65	0.963 un	-3008.95	0.960un	Yes	
60%	9127.24	9299.49	0.981 un	-1781.18	0.980un	Yes	
50%	7582.82	7600.66	0.998 ov	520.00	1.000	Yes	
40%	6034.23	6056.05	0.996 ov	513.35	1.000	Yes	
30%	4474.79	4503.89	0.994 ov	511.04	1.000	Yes	
20%	3034.77	3057.14	0.993 ov	369.05	1.000	Yes	
10%	1557.25	1568.74	0.993 ov	189.44	1.000	Yes	
Supplem	entary information:	N/A					

Date: 2022-09-14 Page: 63 of 93 Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

Clause	Requirement + Test	result – Remark	Verdict
--------	--------------------	-----------------	---------

4.8 Power quality - TABLE: Rapid voltage change

Test conditions:

Case A: Switch on at any power level of primary energy

Case B: Worst case of switching of generator level

Case C: Switch on at the nominal power

Case D: Switch off at the nominal power (not emergency, but normal operational switch off)

Nominal current of PGU I _n (A)		(A)	21.	7	The k	_{imax} value:		1.01	
Test frequency (Hz)		50						
Switching action			la (A)			U(V)		ki	
		L1	L2	L3	L1	L2	L3		
A	#1	6.58	6.56	6.54	230.06	230.12	230.14	0.30	
A	#2	6.58	6.57	6.54	230.03	230.12	230.15	0.30	
	#3	6.60	6.57	6.55	230.05	230.12	230.14	0.30	
		L1	L2	L3	L1	L2	L3		
D	#1	21.93	21.97	21.86	230.06	230.09	230.17	1.01	
В	#2	21.94	21.97	21.89	230.12	230.12	230.20	1.01	
	#3	21.94	21.97	21.89	230.11	230.09	230.18	1.01	
		L1	L2	L3	L1	L2	L3		
С	#1	21.93	21.96	21.88	230.06	230.11	230.16	1.01	
	#2	21.95	21.97	21.85	230.08	230.11	230.17	1.01	
	#3	21.93	21.96	21.88	230.08	230.10	230.17	1.01	
		L1	L2	L3	L1	L2	L3		
D	#1	21.92	21.96	21.86	230.08	230.07	230.14	1.01	
D	#2	21.92	21.96	21.85	230.06	230.07	230.13	1.01	
	#3	21.94	21.96	21.85	230.07	230.10	230.16	1.01	

Supplementary information:

Choose the applicable case for the tested EZE.

Each case shall be measured for three times.

4.8 Pc	ower quality	- TABLE: Flic	ker		Р	
Simulated ne	etwork	L1 (P-N)	230V	Network	L1	-
voltage (V)		L2 (P-N)	230V	impedance	L2	-
		L3 (P-N)	230V		L3	-
					N	-
EZE operatin	ting current L1 21		21.7	EZE operating	L1	-
(A)		L2	21.7	power (VA)	L2	-

TRF No. EN 50549-1:2019 Project No: 64.290.22.31030.01

Rev.: 00 Date: 2022-09-14 Page: 64 of 93 Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

http://www.tuv-sud.cn

Clause	Requirement + Test	result – Remark	Verdict
--------	--------------------	-----------------	---------

		L3		21.7			L3	-	
Simulated network frequency (Hz)		50)Hz			ort circuit ver Sk (VA)	495	5000	
Plt (Maximum Pst)	measured	0.0	062			E nominal ver (W)	15	000	
Maximum flick	er	2.4	046						
coefficient Cφł	<	۷.۱	2.046						
Pst	#1	#2		#3		#4	#5	#6	
L1	0.061	0.068		0.061		0.060	0.062	0.061	
L2	0.061	0.067		0.062		0.061	0.063	0.060	
L3	0.055	0.062		0.057		0.057	0.058	0.058	
Pst	#7	#8		#9		#10	#11	#12	
L1	0.062	0.065	•	0.059		0.058	0.059	0.059	
L2	0.063	0.063	•	0.061		0.059	0.059	0.061	
L3	0.059	0.059	•	0.056		0.056	0.056	0.057	

Supplementary information:

The table is only applied to EZE with nominal current less than 75A.

The ratio of Sk,fic/Sn used for the analysis: 33.

Grid angle setting 32 $^\circ\,$ for test

Power factor setting 1.0 for test

4.8	Power o	juality - T	ABLE: D	C injection	n					Р
It is a design test referring to the test method and evaluation in IEEE 1547.1-2005 standard, item 5.6, which designates to test DC value when the inverter is working at 33%, 66% and 100% of current rating.										
Test level 33% 66% 100%										
Phase L1 L2 L3 L1 L2 L3 L1 L2								L2	L3	
Test results	(Amp)	0.02	0.08	0.07	0.03	0.08	0.07	0.03	0.05	0.08
Test results rated output current)	`	0.11%	0.36%	0.31%	0.14%	0.37%	0.30%	0.15%	0.24%	0.37%
Limi	Limit ≤0.5% ≤0.5% ≤0.5%									

Supplementary information: rated output current: 21.7A.

Arithmetic mean value used as test result in test duration of 5min.

4.8		Power qu	ality - T	ABLE: F	larmoni	cs and i	nter-har	monics				Р
It is a	design	esign test referring to the test method and evaluation in IEC 61000-3-12 & IEC 61000-4-7.										
		Phase L1										
Har	P/P _{Emax}											Limit
mon. Nr.	0%											
1	0.34%	11.14	21.40	30.04	40.40	50.72	61.07	71.45	80.03	90.35	100.64	

TRF No. EN 50549-1:2019 Project No: 64.290.22.31030.01

Rev.: 00 Date: 2022-09-14 Page: 65 of 93 Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

http://www.tuv-sud.cn

Clause	result – Remark V								Verdict			
		%	%	%	%	%	%	%	%	%	%	
2	0.01%	0.21%	0.27%	0.30%	0.37%	0.42%	0.45%	0.53%	0.52%	0.56%	0.64%	8%
3	0.01%	0.21%	0.10%	0.11%	0.11%	0.42%	0.43%	0.33%	0.12%	0.13%	0.04%	
4	0.01%	0.19%	0.26%	0.34%	0.42%	0.48%	0.12%	0.12%	0.68%	0.74%	0.78%	4%
5	0.01%	0.19%	0.20%	0.34%	0.42%	0.56%	0.68%	0.78%	0.87%	0.74%	1.04%	10.7%
6	0.01%	0.04%	0.04%	0.05%	0.06%	0.06%	0.07%	0.73%	0.08%	0.99%	0.10%	2.6%
7	0.01%	0.92%	0.41%	0.03%	0.10%	0.19%	0.30%	0.40%	0.47%	0.56%	0.66%	7.2%
8	0.01%	0.03%	0.03%	0.05%	0.07%	0.09%	0.07%	0.40%	0.05%	0.05%	0.07%	2%
9	0.01%	0.03%	0.03%	0.03%	0.07 %	0.03%	0.07%	0.03%	0.03%	0.03%	0.07 %	Z /0
	0.01%	0.02%	0.03%	0.02%	0.06%	0.03%	0.04%	0.04%	0.04%	0.04%	0.00%	1.6%
10	0.01%	0.05%	0.07 %		0.00%			0.07 %			0.09%	
11			0.29%	0.21%		0.13%	0.19%		0.27%	0.32%		3.1%
12	0.01%	0.03%		0.02%	0.03%	0.03%	0.03%	0.03%	0.03%	0.03%	0.06%	1.3%
13	0.01%	0.33%	0.04%		0.19%	0.24%		0.27%	0.26%	0.27%	0.29%	2.0%
14	0.01%	0.03%	0.04%	0.02%	0.07%	0.10%	0.10%	0.10%	0.10%	0.11%	0.11%	
15	0.01%	0.02%	0.03%	0.02%	0.03%	0.04%	0.04%	0.04%	0.04%	0.05%	0.07%	
16	0.01%	0.03%	0.03%	0.02%	0.05%	0.07%	0.07%	0.07%	0.07%	0.08%	0.09%	
17	0.01%	0.22%	0.12%	0.10%	0.03%	0.12%	0.19%	0.24%	0.25%	0.24%	0.24%	
18	0.03%	0.04%	0.04%	0.04%	0.04%	0.04%	0.04%	0.04%	0.04%	0.05%	0.05%	
19	0.01%	0.07%	0.10%	0.05%	0.05%	0.10%	0.17%	0.18%	0.18%	0.20%	0.21%	
20	0.02%	0.02%	0.04%	0.03%	0.05%	0.07%	0.09%	0.10%	0.10%	0.11%	0.10%	
21	0.01%	0.02%	0.02%	0.02%	0.02%	0.02%	0.03%	0.03%	0.03%	0.03%	0.04%	
22	0.01%	0.03%	0.04%	0.03%	0.03%	0.05%	0.05%	0.07%	0.08%	0.09%	0.10%	
23	0.01%	0.06%			0.05%	0.08%	0.14%	0.18%	0.19%	0.20%	0.23%	
24	0.10%	0.11%	0.11%	0.11%	0.11%	0.11%	0.11%	0.12%	0.12%	0.12%	0.13%	
25	0.01%	0.13%	0.09%	0.05%	0.06%	0.05%	0.10%	0.11%	0.10%	0.11%	0.12%	
26	0.02%	0.03%	0.04%	0.05%	0.03%	0.04%	0.07%	0.10%	0.11%	0.12%	0.13%	
27	0.01%	0.02%	0.03%	0.03%	0.02%	0.02%	0.03%	0.03%	0.03%	0.03%	0.04%	
28	0.01%	0.03%	0.02%	0.04%	0.03%	0.03%	0.04%	0.04%	0.05%	0.07%	0.08%	
29	0.01%	0.15%	0.03%	0.02%	0.10%	0.06%	0.08%	0.11%	0.09%	0.07%	0.10%	
30	0.03%	0.04%	0.04%	0.04%	0.04%	0.04%	0.04%	0.04%	0.05%	0.05%	0.05%	
31	0.01%	0.02%	0.03%	0.05%	0.13%	0.11%	0.11%	0.12%	0.13%	0.15%	0.19%	
32	0.01%	0.03%	0.03%	0.05%	0.02%	0.02%	0.04%	0.06%	0.08%	0.09%	0.10%	
33	0.01%	0.02%	0.03%	0.02%	0.02%	0.02%	0.03%	0.03%	0.03%	0.03%	0.03%	

Page: 66 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

http://www.tuv-sud.cn

Clause	Rec	uiremen	t + Test				re	sult – Re	mark			Verdict
Oladoc	, 1100	direttiett	1 1000				10	Juli 110				verdiet
34	0.01%	0.02%	0.04%	0.06%	0.02%	0.02%	0.02%	0.05%	0.07%	0.09%	0.10%	
35	0.01%	0.06%	0.11%	0.12%	0.16%	0.14%	0.12%	0.11%	0.12%	0.15%	0.18%	
36	0.01%	0.03%	0.02%	0.02%	0.03%	0.03%	0.03%	0.04%	0.04%	0.04%	0.04%	
37	0.01%	0.11%	0.11%	0.13%	0.18%	0.18%	0.18%	0.19%	0.17%	0.12%	0.10%	
38	0.01%	0.02%	0.03%	0.04%	0.04%	0.05%	0.05%	0.08%	0.08%	0.10%	0.10%	
39	0.01%	0.02%	0.02%	0.02%	0.02%	0.03%	0.04%	0.03%	0.04%	0.04%	0.04%	
40	0.01%	0.02%	0.03%	0.03%	0.02%	0.04%	0.05%	0.03%	0.04%	0.05%	0.06%	
THC/	0.12%	1.39%	0.79%	0.70%	0.86%	1.01%	1.19%	1.38%	1.48%	1.62%	1.78%	13%
PWH C/I _{ref}	0.12%	0.37%	0.32%	0.31%	0.36%	0.38%	0.47%	0.54%	0.55%	0.58%	0.60%	22%
						Phase L	.2					
Har						P/P _{Emax}						Limit
mon. Nr.	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%	
1	0.34%	11.11 %	21.39 %	30.02 %	40.39 %	50.72 %	61.10 %	71.48 %	80.08 %	90.42 %	100.7 %	
2	0.01%	0.28%	0.38%	0.44%	0.58%	0.69%	0.79%	0.87%	0.98%	1.06%	1.12%	8%
3	0.01%	0.13%	0.16%	0.18%	0.19%	0.20%	0.22%	0.21%	0.23%	0.23%	0.23%	
4	0.01%	0.19%	0.25%	0.29%	0.35%	0.41%	0.47%	0.54%	0.57%	0.61%	0.65%	4%
5	0.01%	0.88%	0.34%	0.33%	0.45%	0.53%	0.62%	0.72%	0.79%	0.86%	0.92%	10.7%
6	0.01%	0.04%	0.04%	0.04%	0.04%	0.04%	0.05%	0.05%	0.05%	0.05%	0.08%	2.6%
7	0.00%	0.90%	0.41%	0.16%	0.11%	0.23%	0.35%	0.45%	0.53%	0.62%	0.72%	7.2%
8	0.01%	0.04%	0.03%	0.06%	0.07%	0.08%	0.07%	0.07%	0.07%	0.08%	0.11%	2%
9	0.01%	0.03%	0.03%	0.03%	0.03%	0.03%	0.03%	0.03%	0.03%	0.04%	0.07%	
10	0.01%	0.04%	0.05%	0.04%	0.08%	0.10%	0.11%	0.10%	0.10%	0.11%	0.12%	1.6%
11	0.01%	0.09%	0.29%	0.21%	0.11%	0.12%	0.17%	0.21%	0.24%	0.28%	0.32%	3.1%
12	0.01%	0.03%	0.03%	0.02%	0.03%	0.03%	0.03%	0.03%	0.03%	0.03%	0.06%	1.3%
13	0.01%	0.35%	0.07%	0.08%	0.21%	0.27%	0.30%	0.29%	0.28%	0.30%	0.31%	2.0%
14	0.01%	0.03%	0.05%	0.02%	0.06%	0.09%	0.09%	0.09%	0.10%	0.11%	0.11%	
15	0.01%	0.02%	0.02%	0.02%	0.02%	0.02%	0.03%	0.03%	0.03%	0.03%	0.06%	
16	0.01%	0.03%	0.02%	0.02%	0.05%	0.08%	0.09%	0.09%	0.09%	0.10%	0.11%	
17	0.01%	0.21%	0.10%	0.08%	0.03%	0.12%	0.18%	0.23%	0.22%	0.21%	0.21%	
18	0.02%	0.04%	0.04%	0.04%	0.04%	0.04%	0.04%	0.04%	0.04%	0.04%	0.05%	
19	0.01%	0.06%	0.11%	0.06%	0.03%	0.09%	0.16%	0.18%	0.18%	0.21%	0.22%	

Page: 67 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

http://www.tuv-sud.cn

Clause	Rec	luiremen	t + Test				re	sult – Re	mark			Verdict
					I	ı	ı	1			1	
20	0.01%	0.03%	0.03%	0.04%	0.03%	0.06%	0.06%	0.07%	0.08%	0.09%	0.09%	
21	0.01%	0.02%	0.03%	0.04%	0.02%	0.02%	0.02%	0.03%	0.02%	0.02%	0.03%	
22	0.01%	0.03%	0.05%	0.04%	0.04%	0.07%	0.09%	0.10%	0.12%	0.13%	0.13%	
23	0.01%	0.07%	0.11%	0.08%	0.04%	0.07%	0.14%	0.18%	0.18%	0.20%	0.22%	
24	0.05%	0.08%	0.08%	0.08%	0.08%	0.08%	0.08%	0.08%	0.08%	0.08%	0.08%	
25	0.01%	0.16%	0.09%	0.06%	0.08%	0.05%	0.09%	0.10%	0.10%	0.10%	0.11%	
26	0.01%	0.03%	0.03%	0.04%	0.03%	0.04%	0.05%	0.07%	0.09%	0.11%	0.12%	
27	0.01%	0.03%	0.02%	0.02%	0.02%	0.02%	0.02%	0.03%	0.03%	0.03%	0.03%	
28	0.01%	0.04%	0.04%	0.05%	0.03%	0.03%	0.05%	0.07%	0.08%	0.09%	0.09%	
29	0.01%	0.14%	0.04%	0.03%	0.08%	0.05%	0.09%	0.11%	0.10%	0.07%	0.09%	
30	0.02%	0.04%	0.04%	0.04%	0.04%	0.04%	0.04%	0.04%	0.04%	0.04%	0.04%	
31	0.01%	0.02%	0.02%	0.06%	0.14%	0.11%	0.11%	0.12%	0.13%	0.15%	0.19%	
32	0.01%	0.02%	0.03%	0.05%	0.03%	0.03%	0.04%	0.05%	0.07%	0.08%	0.09%	
33	0.01%	0.02%	0.03%	0.03%	0.04%	0.04%	0.03%	0.04%	0.03%	0.03%	0.03%	
34	0.01%	0.03%	0.04%	0.06%	0.04%	0.03%	0.03%	0.06%	0.08%	0.10%	0.11%	
35	0.01%	0.05%	0.10%	0.12%	0.15%	0.12%	0.10%	0.10%	0.10%	0.14%	0.18%	
36	0.01%	0.02%	0.02%	0.03%	0.04%	0.04%	0.04%	0.05%	0.05%	0.05%	0.05%	
37	0.01%	0.13%	0.11%	0.13%	0.18%	0.16%	0.16%	0.17%	0.15%	0.10%	0.08%	
38	0.00%	0.02%	0.04%	0.05%	0.04%	0.03%	0.04%	0.04%	0.05%	0.07%	0.09%	
39	0.01%	0.03%	0.02%	0.03%	0.04%	0.03%	0.04%	0.04%	0.04%	0.04%	0.04%	
40	0.00%	0.01%	0.03%	0.04%	0.04%	0.02%	0.03%	0.06%	0.08%	0.08%	0.09%	
THC/	0.06%	1.41%	0.84%	0.77%	0.95%	1.12%	1.32%	1.49%	1.63%	1.78%	1.92%	13%
PWH C/I _{ref}	0.06%	0.37%	0.30%	0.30%	0.35%	0.36%	0.45%	0.51%	0.52%	0.55%	0.60%	22%
						Phase L	.3					
Har						P/P _{Emax}						
mon. Nr.	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%	Limit
1	0.34%	11.06 %	21.28 %	29.89 %	40.24 %	50.55 %	60.88 %	71.18 %	79.75 %	90.06 %	100.34 %	
2	0.01%	0.22%	0.21%	0.20%	0.29%	0.35%	0.46%	0.54%	0.64%	0.69%	0.73%	8%
3	0.01%	0.07%	0.08%	0.09%	0.11%	0.11%	0.12%	0.12%	0.14%	0.13%	0.14%	
4	0.01%	0.15%	0.23%	0.28%	0.34%	0.39%	0.46%	0.53%	0.57%	0.61%	0.66%	4%
5	0.00%	0.88%	0.34%	0.30%	0.41%	0.49%	0.60%	0.70%	0.78%	0.86%	0.92%	10.7%

Page: 68 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

http://www.tuv-sud.cn

Clause	Rec	luiremen	t + Test				re	sult – Re	mark			Verdict
6	0.01%	0.04%	0.02%	0.04%	0.05%	0.05%	0.07%	0.07%	0.08%	0.08%	0.10%	2.6%
7	0.01%	0.91%	0.41%	0.16%	0.08%	0.20%	0.31%	0.41%	0.49%	0.59%	0.68%	7.2%
8	0.01%	0.03%	0.03%	0.04%	0.05%	0.06%	0.04%	0.03%	0.03%	0.04%	0.07%	2%
9	0.01%	0.04%	0.03%	0.04%	0.04%	0.05%	0.05%	0.05%	0.05%	0.05%	0.07%	
10	0.00%	0.04%	0.06%	0.05%	0.08%	0.10%	0.10%	0.10%	0.10%	0.11%	0.11%	1.6%
11	0.00%	0.11%	0.30%	0.21%	0.09%	0.10%	0.16%	0.20%	0.24%	0.29%	0.33%	3.1%
12	0.01%	0.03%	0.03%	0.02%	0.03%	0.04%	0.04%	0.04%	0.04%	0.04%	0.05%	1.3%
13	0.01%	0.32%	0.04%	0.07%	0.19%	0.23%	0.26%	0.26%	0.25%	0.25%	0.26%	2.0%
14	0.01%	0.03%	0.04%	0.02%	0.07%	0.10%	0.09%	0.10%	0.10%	0.11%	0.10%	
15	0.01%	0.02%	0.03%	0.02%	0.02%	0.03%	0.04%	0.04%	0.04%	0.05%	0.06%	
16	0.01%	0.04%	0.03%	0.02%	0.05%	0.08%	0.08%	0.08%	0.08%	0.09%	0.08%	
17	0.01%	0.21%	0.10%	0.10%	0.03%	0.11%	0.17%	0.22%	0.23%	0.22%	0.22%	
18	0.02%	0.03%	0.04%	0.04%	0.04%	0.03%	0.04%	0.04%	0.04%	0.04%	0.04%	
19	0.01%	0.08%	0.08%	0.04%	0.03%	0.07%	0.12%	0.14%	0.14%	0.16%	0.17%	
20	0.01%	0.03%	0.04%	0.04%	0.04%	0.06%	0.08%	0.09%	0.10%	0.11%	0.11%	
21	0.01%	0.03%	0.03%	0.05%	0.03%	0.03%	0.04%	0.04%	0.03%	0.03%	0.04%	
22	0.01%	0.04%	0.04%	0.05%	0.04%	0.05%	0.07%	0.09%	0.11%	0.12%	0.11%	
23	0.01%	0.08%	0.10%	0.07%	0.05%	0.07%	0.13%	0.17%	0.18%	0.19%	0.21%	
24	0.05%	0.09%	0.09%	0.09%	0.08%	0.09%	0.09%	0.09%	0.09%	0.09%	0.10%	
25	0.01%	0.13%	0.07%	0.03%	0.07%	0.04%	0.07%	0.08%	0.07%	0.07%	0.08%	
26	0.01%	0.04%	0.03%	0.06%	0.03%	0.03%	0.06%	0.09%	0.11%	0.12%	0.13%	
27	0.01%	0.03%	0.03%	0.03%	0.02%	0.02%	0.03%	0.03%	0.03%	0.03%	0.03%	
28	0.01%	0.03%	0.04%	0.06%	0.02%	0.02%	0.03%	0.06%	0.08%	0.09%	0.08%	
29	0.00%	0.14%	0.03%	0.03%	0.09%	0.04%	0.06%	0.09%	0.07%	0.05%	0.07%	
30	0.02%	0.04%	0.04%	0.04%	0.04%	0.04%	0.04%	0.04%	0.04%	0.04%	0.05%	
31	0.01%	0.03%	0.04%	0.06%	0.12%	0.10%	0.09%	0.10%	0.11%	0.13%	0.15%	
32	0.01%	0.03%	0.05%	0.07%	0.03%	0.02%	0.03%	0.06%	0.07%	0.09%	0.10%	
33	0.01%	0.03%	0.03%	0.03%	0.04%	0.04%	0.04%	0.04%	0.04%	0.04%	0.04%	
34	0.00%	0.04%	0.04%	0.05%	0.03%	0.03%	0.02%	0.05%	0.06%	0.07%	0.07%	
35	0.01%	0.06%	0.11%	0.13%	0.15%	0.12%	0.10%	0.10%	0.11%	0.15%	0.19%	
36	0.00%	0.02%	0.02%	0.02%	0.03%	0.03%	0.04%	0.04%	0.05%	0.05%	0.06%	
37	0.01%	0.12%	0.11%	0.12%	0.17%	0.16%	0.17%	0.17%	0.16%	0.11%	0.09%	
38	0.01%	0.01%	0.03%	0.04%	0.02%	0.04%	0.04%	0.05%	0.07%	0.10%	0.11%	
	0.0170	3.0170	3.0070	J.U-7/0	J.UZ /0	J.UT/0	J.UT/0	3.0070	5.57 /0	3.1070	0.11/0	

Page: 69 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

http://www.tuv-sud.cn

Clause)	Req	uiremen	t + Test				r	esult – Re	emark			Verdict
39	0.00	0%	0.01%	0.02%	0.02%	0.03%	0.04%	0.04%	0.03%	0.03%	0.03%	0.04%	
40	0.00	0%	0.01%	0.02%	0.02%	0.03%	0.04%	0.04%	0.05%	0.07%	0.08%	0.09%	
THC/	0.06	6%	1.38%	0.76%	0.62%	0.74%	0.88%	1.08%	1.27%	1.41%	1.55%	1.68%	13%
PWH C/I _{ref}	0.06	6%	0.36%	0.29%	0.30%	0.34%	0.34%	0.41%	0.49%	0.51%	0.54%	0.57%	22%
Supple	emen	itary	informat	tion: N/A									

4.8	Power qualit inverters	ty - TABLE: Ca	alculation of th	e asymmetry of thr	ee-phase	P		
		L1 (P-N)	230 Va.c.					
Simulated n voltage (V)	etwork	L2 (P-N)	230 Va.c.	Frequency (Hz)		50.0Hz		
	L3 (P-N) 230 Va.c.							

Test condition:

- a) 100 % Rated power \pm 5 % PEmax, cos ϕ = 1;
- b) 100 % Rated power \pm 5 % PEmax, cos φ = max. under excited;
- c) 100 % Rated power \pm 5 % PEmax, cos φ = max. over-excited;
- d) 50% Rated power \pm 5 % PEmax, cos ϕ = 1;
- e) 50% Rated power \pm 5 % PEmax, cos φ = max. under excited;
- f) 50 % Rated power \pm 5 % PEmax, cos ϕ = max. over-excited.
- g) 100% of SEmax consumption power, cosφ=1, for ESS;
- h) 50% of SEmax consumption power, cosφ=1, for ESS.

,									
	The maximum	unbalance un	der all condition:	(VA)	27.	6			
a)	Number	1	2	3	4	5			
	L1	5028.4	5027.3	5027.5	5031.9	5036.5			
	L2	5036.7	5039.5	5035.8	5030.6	5041.1			
	L3	5015.0	5019.9	5015.1	5015.8	5015.7			
	Calculation								
	L1-L2	8.3	12.2	8.3	1.3	4.6			
	L2-L3	21.7	19.6	20.7	14.8	25.4			
	L3-L1	13.4	7.4	12.4	16.1	20.8			
	Unbalance	21.7	19.6	20.7	16.1	25.4			
	Maximum unb	alance		25	5.4				
b)	Number	1	2	3	4	5			
	L1	5480.5	5477.2	5468.1	5452.8	5457.8			

Clause	Requirement + Test			result – Rema	ark	Verdict
	L2	5494.9	5491.5	5473.2	5482.4	5470.1
	L3	5467.3	5471.6	5467.8	5441.8	5444.5
	Calculation	0.00	<u> </u>	0.07.0	011110	0
	L1-L2	14.4	14.3	5.1	29.6	12.3
	L2-L3	27.6	19.9	5.4	40.6	25.6
	L3-L1	13.2	5.6	0.3	11.0	13.3
	Unbalance	27.6	19.9	5.4	40.6	25.6
	Maximum ur	balance		27.		
c)	Number	1	2	3	4	5
, 	L1	5578.2	5574.0	5567.8	5564.3	5565.9
	L2	5580.7	5579.2	5575.0	5567.8	5571.7
	L3	5559.5	5553.0	5551.6	5543.9	5543.5
	Calculation					
	L1-L2	2.5	5.2	7.2	3.5	5.8
	L2-L3	21.2	26.2	23.4	23.9	28.2
	L3-L1	18.7	21.0	16.2	20.4	22.4
	Unbalance	21.2	26.2	23.4	23.9	28.2
	Maximum unba	alance		26.:	2	
d)	Number	1	2	3	4	5
	L1	2535.6	2538.8	2535.5	2535.8	2534.4
	L2	2538.6	2539.5	2534.0	2534.0	2535.1
	L3	2527.9	2530.8	2524.5	2523.9	2522.7
	Calculation			1	1	
	L1-L2	3.0	0.7	1.5	1.8	0.7
	L2-L3	10.7	8.7	9.5	10.1	12.4
	L3-L1	7.7	8.0	11.0	11.9	11.7
	Unbalance	10.7	8.7	11.0	11.9	12.4
	Maximum unba	alance	<u> </u>	12.	4	•
e)	Number	1	2	3	4	5
	L1	2792.5	2796.4	2796.4	2798.5	2803.7
	L2	2794.5	2798.0	2796.3	2796.9	2799.4
	L3	2778.2	2783.2	2783.3	2785.6	2790.1
	Calculation					

Page: 71 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

http://www.tuv-sud.cn

Clause	Requirement + Test	:		result – Rem	ark	Verdict
	L1-L2	2.0	1.6	0.1	1.6	4.3
	L2-L3	16.3	14.8	13.0	11.3	9.3
	L3-L1	14.3	13.2	13.1	12.9	13.6
	Unbalance	16.3	14.8	13.1	12.9	13.6
	Maximum unba	alance		16.	3	•
f)	Number	1	2	3	4	5
	L1	2805.3	2806.1	2810.2	2808.3	2796.2
	L2	2808.8	2808.9	2813.6	2814.4	2800.8
	L3	2796.8	2797.4	2804.6	2804.6	2790.4
	Calculation					
	L1-L2	3.5	2.8	3.4	6.1	4.6
	L2-L3	12.0	11.5	9.0	9.8	10.4
	L3-L1	8.5	8.7	5.6	3.7	5.8
	Unbalance	12.0	11.5	9.0	9.8	10.4
	Maximum unba	alance		12.	0	
Supplem	entary information:N//	4				

4.9.3.2 &	4.9.3.3	Undervolta	ge protection	& Overvolt	tage	protection			Р
Undervolt	age thr	setting time	9	100ms					
Undervolt	age thr	eshold stage 2	[27<<] setting v	value	0.8	0 Un	setting time	9	100ms
Overvolta	ge thre	shold stage 1 [59>] setting val	ue	1.1	5 Un	setting time	Э	100ms
Overvolta	ge thre	shold stage 2 [59>>] setting va	alue	1.2	Un	setting time	Э	100ms
		1	Î		2	2			3
	Value (V) Time (ms)					Time (ms)	Value	(V)	Time (ms)
	U<	195.4/230.1/ 230.0	76.0	195.4/230 230.1).1/	62.0	195.4/2 230.		65.0
L1-N	U<<	184.0/230.2/ 230.3	74.0	184.0/230 230.1	.0/	62.0	184.0/23 230.		70.0
voltage	U>	264.9/230.1/ 230.0	69.0	265.0/230 230.1).1/	69.4	265.0/22 230.		62.4
	276.0/229.9/ 229.9	276.0/229 230.1	.9/	72.8	276.0/2 230.		70.0		
L2-N voltage	L2-N 12 230.0/195.4/ 75.0					75.0	230.0/19 230.		64.6

Page: 72 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

http://www.tuv-sud.cn

Clause	Requi	rement + Test				result – Rem	nar	k		Verdict
	U<<	230.1/184.0/	78.0	230.1/184	.0/	75.0		230.0/184.0/ 230.2		64.0
	U>	230.0/265.0/ 230.1	74.6	230.1/265 230.1	5.0/	66.6		229.9/265.0/ 230.2		72.6
	U>>	229.9/276.0/ 230.0	73.4	229.9/276 230.1	5.0/	74.2		229.9/276.0/ 230.0		63.8
	U<	230.1/230.1/ 195.4	71.2	230.0/230 195.4	.0/	64.2		230.0/230.2/ 195.4		64.4
L3-N	U<<	230.1/230.1/ 184.0	74.8	230.1/230 184.0	.0/	57.6		230.1/230.1/ 184.0		57.6
voltage	U>	229.9/230.0/ 265.0	1 64 8 1 1 70 0		70.0		230.0/230.1/ 265.0		75.4	
	U>>	229.9/229.9/ 277.0	74.0	230.0/230 276.5).1/	74.0		229.9/229.9/ 277.0		78.6
	U<	195.4/195.4/ 195.3	60.4	195.4/194 195.1	.9/	55.0		195.4/195.2/ 195.1		65.0
All	U<<	184.1/184.0/ 184.0	63.2	184.1/184 184.2	.1/	74.2		184.1/184.0/ 184.1		65.0
voltage U>	265.1/264.9/ 265.0	68.4	265.0/264.9 265.0		63.6		265.1/264.9/ 265.1		68.0	
	U>>	276.0/276.0/ 276.1	67.4	276.0/276 276.2	5.0/	65.8		276.1/275.9/ 276.1		65.6
Undervolt	tago thi	reshold stage 1	[27] cotting va	aluo	<u></u>	5 Un	<u></u>	etting time	100s	
		eshold stage 2	· · · · ·)
								etting time	5s	
		shold stage 1 [5						etting time	100s	·
Overvoita	ige inre	shold stage 2 [5		l		! Un	Se	etting time	5s	
		1/21 (1/)	'	Value ()		<u> </u>		\/al (\) (\)	3	Fi (-)
		Value (V)	Time (s)	Value (V	•	Time (s)		Value (V)		Time (s)
	U<	194.6/230.2/ 230.1	98.8	194.5/230 230.1).1/	99.0		194.6/230.0/ 230.1		98.8
L1-N	U<<	182.4/230.0/ 230.1	4.80	182.4/229 230.2	.9/	4.84		182.4/230.1/ 230.2		4.82
voltage	U>	265.5/230.0/ 230.1	99.0	265.5/229 230.0	.9/	99.2	_	265.5/229.9/ 230.1		98.8
	U>>	277.2/230.1/ 230.1	4.80	277.2/230 230.0	.0/	4.82	4.82 277.2/229. 230.1			4.84
L2-N voltage	U<	230.1/194.6/ 230.2	98.8	230.0/194 230.2	.6/	98.6		230.1/194.6/ 230.1		99.2

Page: 73 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

http://www.tuv-sud.cn

Clause	Requi	irement + Test			result – Rem	ark	Verdict
	U<<	230.1/182.4/ 230.2	4.82	230.0/182.4/	4.84	230.0/182.4/	4.80
	U>	229.9/265.5/ 230.1	99.4	229.9/265.5/ 230.0	99.0	230.0/265.5/ 230.1	99.2
	U>>	229.9/277.2/ 230.0	4.80	229.9/277.2/ 230.0	4.82	229.8/277.2/ 230.1	4.82
	U<	230.1/230.0/ 194.0	98.8	230.2/230.0/ 194.0	99.0	230.1/230.1/ 194.0	99.2
L3-N	U<<	230.0/230.0/ 182.6	4.84	230.1/230.0/ 182.6	4.84	230.1/229.9/ 182.6	4.78
voltage	U>	230.0/229.9/ 265.7	98.6	230.0/230.0/ 265.7	99.0	230.1/229.9/ 265.7	99.0
	U>>	230.0/230.0/ 277.2	4.80	230.1/230.0/ 277.2	4.82	230.1/230.0/ 277.2	4.82
	U<	194.6/194.5/ 194.7	99.8	194.6/194.6/ 194.7	99.6	194.6/194.6/ 194.8	99.0
All	U<<	182.4/182.2/ 182.4	4.84	182.4/182.2/ 182.4	4.84	182.3/182.2/ 182.4	4.82
voltage	U>	265.6/265.5/ 265.7	98.6	265.5/265.5/ 265.7	98.2	265.6/265.5/ 265.6	99.0
	U>>	278.1/277.9/ 277.9	4.82	278.1/277.9/ 277.9	4.82	278.2/277.9/ 277.8	4.84
Suppleme	entary in	nformation: N/A		<u>'</u>	•		

4.9.3.4	Ov	Overvoltage 10 min mean protection P									
Test procedure	a)	a) The voltage is maintained at 100% Un for 600s, afterwards the voltage is raise to 112%, the switch off must be within 600s;									
	b)	The voltage is maintained at Un for 600s, afterwards the voltage is raised to 108%. The 0switch off should not be activated;									
	c)	c) The voltage is maintained at 106% Un for 600s, afterwards the voltage is raised to 114%. The switch off should be within 225s-375s.									
Overvoltage	Overvoltage threshold setting value 253 Va.c.										
			L1	-N							
		а	b)		С					
Switch of (Yes/No		Time (s)	Switch off (Yes/ No)	Time (s)	Switch off (Yes/No)	Time (s)					
Yes	Yes 594.8 No / Yes 368.4										
	L2-N										
	a b c										

Page: 74 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

http://www.tuv-sud.cn

Clause	Requirement + Test	result – Remark	Verdict
--------	--------------------	-----------------	---------

Switch off (Yes/No)	Time (s)	Switch off (Yes/ No)	Time (s)	Switch off (Yes/No)	Time (s)					
Yes	594.6	No	/	Yes	367.3					
	L3-N									
a b c										
Switch off (Yes/No)	Time (s)	Switch off (Yes/ No)	Time (s)	Switch off (Yes/No)	Time (s)					
Yes	594.2	No	/	Yes	369.4					
		A	II							
á	a	k)	(;					
Switch off (Yes/No)	Time (s)	Switch off (Yes/ No)	Time (s)	Switch off (Yes/No)	Time (s)					
Yes	593.6	No	/	Yes	368.2					
Supplementary in	Supplementary information: N/A									

4.9.3.5 &	1.9.3.5 & 4.9.3.6 Underfrequency protection & Overfrequency protectionc									
underfreq	uency t	hreshold proted	ction [81<] setti	ng value	47.	5 Hz	setting time)	0.1 s	
underfreq	uency t	hreshold proted	ction [81<<] set	ting value	47.0 Hz setting tim		setting time)	0.1 s	
Overfrequ	ency th	reshold protec	tion [81>] settin	g value	51.	5 Hz	setting time)	0.1 s	
Overfrequ	ency th	reshold protec	tion [81>>] setti	ng value	52.	0 Hz	setting time)	0.1 s	
1 2 3										
		Value (Hz)	Time (ms)	Value (H	z)	Time (ms)	Value (Hz)	Time (ms)	
	F<	47.52	95.0	47.50	47.50 84.4		47.5	3	92.0	
fraguasi	F<<	47.02	82.4	47.02		90.0	47.0	2	77.8	
frequecy	F>	51.53	83.4	51.53		90.2	51.5	3	75.8	
	F>>	52.03	87.6	52.03		87.0	52.0	3	88.6	
underfreq	uency t	hreshold proted	ction [81<] setti	ng value	e 47.5 Hz setting time)	100 s		
underfreq	uency t	hreshold proted	ction [81<<] set	ting value	47.	0 Hz	setting time)	5 s	
Overfrequ	ency th	reshold protec	tion [81>] settin	g value	51.	5 Hz	setting time)	100 s	
Overfrequ	ency th	reshold protec	ng value	52.	0 Hz	setting time)	5 s		
				2) 100%L	Jn					
		1			2			3		
		Value (Hz)	Time (s)	Value (H	z)	Time (s)	Value (Hz)	Time (s)	

Page: 75 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

http://www.tuv-sud.cn

Clause	Requir	ement + Test		result – Rema	result – Remark		
	F<	47.48	99.8	47.48	99.6	47.48	99.8
f== ==	F<<	46.98	4.9	47.01	4.9	46.98	4.9
frequecy	F>	51.52	99.6	51.52	99.8	51.52	99.8
	F>>	52.02	4.9	52.02	4.9	52.02	4.9
Suppleme	ntary in	formation: N/A			•		

4.9.4.2	Active	metho	ds teste	ed with a	a resonar	nt circui	t				Р
No.	PEUT (% of EUT ratin g)	Reac tive Load (% of Q _L)	P _{AC} (% of nomi nal)	Q _{AC} (% of nomi nal)	Run on time (ms)	P _{EUT} (kW)	Actua I Q _f (L1)	Actua I Q _f (L2)	Actua I Q _f (L3)	V _{DC} (V)	Remarks
1	100	100	0	0	257.0	14.9	1.00	1.00	1.00	800	Test A at BL
2	66	66	0	0	232.0	7.9	0.99	1.00	1.00	690	Test B at BL
3	33	33	0	0	184.0	3.9	1.00	1.00	1.00	340	Test C at BL
4	100	100	-5	-5	99.5	14.9	1.04	1.00	1.01	800	Test A at IB
5	100	100	-5	0	185.0	14.9	1.06	1.04	1.04	800	Test A at IB
6	100	100	-5	5	154.0	14.9	1.09	1.08	1.07	800	Test A at IB
7	100	100	0	-5	205.0	14.9	0.98	0.95	0.97	800	Test A at IB
8	100	100	0	5	216.5	14.9	1.03	1.03	1.02	800	Test A at IB
9	100	100	5	-5	180.0	14.9	0.94	0.91	0.92	800	Test A at IB
10	100	100	5	0	202.5	14.9	0.97	0.94	0.95	800	Test A at IB
11	100	100	5	5	175.5	14.9	0.99	0.99	0.98	800	Test B at IB
12	66	66	0	-5	135.0	7.9	0.98	0.97	0.97	690	Test B at IB
13	66	66	0	-4	146.0	7.9	1.00	0.98	0.98	690	Test B at IB
14	66	66	0	-3	157.5	7.9	1.00	0.98	0.98	690	Test B at IB
15	66	66	0	-2	181.5	7.9	1.01	0.99	0.99	690	Test B at IB
16	66	66	0	-1	188.0	7.9	1.01	1.00	0.99	690	Test B at IB
17	66	66	0	1	225.5	7.9	1.02	1.01	1.00	690	Test B at IB
18	66	66	0	2	185.5	7.9	1.03	1.01	1.01	690	Test B at IB
19	66	66	0	3	166.5	7.9	1.03	1.02	1.01	690	Test B at IB
20	66	66	0	4	149.0	7.9	1.04	1.02	1.02	690	Test B at IB

Page: 76 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

Clause	Requi	rement	+ Test				resu	ılt – Rem	nark			Verdict
	1		ı		1		ı	ı	ı		ı	
21	66	66	0	5	140.0	7.9	1.05	1.03	1.02	690	Tes	t B at IB
22	33	33	0	-5	81.0	3.9	0.97	0.99	1.00	340	Tes	t C at IB
23	33	33	0	-4	91.5	3.9	0.98	1.01	0.99	340	Tes	t C at IB
24	33	33	0	-3	104.5	3.9	0.99	1.02	0.99	340	Tes	t C at IB
25	33	33	0	-2	115.5	3.9	1.00	1.03	0.99	340	Tes	t C at IB
26	33	33	0	-1	136.0	3.9	1.00	1.03	1.00	340	Tes	t C at IB
27	33	33	0	1	148.5	3.9	1.01	1.05	1.01	340	Tes	t C at IB
28	33	33	0	2	128.0	3.9	1.01	1.01	1.01	340	Tes	t C at IB
29	33	33	0	3	110.0	3.9	1.02	1.02	1.01	340	Tes	t C at IB
30	33	33	0	4	92.0	3.9	1.03	1.03	1.03	340	Tes	t C at IB
31	33	33	0	5	91.0	3.9	1.03	1.03	1.03	340	Tes	t C at IB
Supplem	Supplementary information: N/A											

Page: 77 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

Clause Requirement + Test result - Remark Verdict

4.10.2 & 4.10.3	Automatio	c reconnection after	er tripping & Startin	g to generate electrical p	ower P		
		Automat	ic reconnection after	er tripping			
			Test 1)				
Test sequence	Freq (Hz)	Time stay in step (min.)	Whether reconnec	t to main and the active po (Yes/No)	wer generated?		
1.	49.45	0.5 min		No			
2.	49.45	1.0 min		No			
3.	49.45	1.5 min		No			
4.	49.45	2.0 min		No			
Test sequence	Freq (Hz)	Time after reach 49.55 Hz (min)	Measured charge rate P _{Measured} (W) Arised charge rate ΔP during next 1 minute (W) Deviation w 10% Pn (Yes/No)				
5.	49.55	0.0 min	-	Reconnection time (s)	60s		
			After reconnection				
6.	49.55	0.0 min	0	-	-		
7.	49.55	0.5 min	21.8	1329.9	Yes		
8.	49.55	1.0 min	1095.3	795.2	Yes		
9.	49.55	1.5 min	1351.7	1278.7	Yes		
10.	49.55	2.0 min	1890.5	1306.1	Yes		
11.	49.55	2.5 min	2630.4	1252.6	Yes		
12.	49.55	3.0 min	3196.6	1331.0	Yes		
13.	49.55	3.5 min	3883.0	1274.5	Yes		
14.	49.55	4.0 min	4527.6	1266.7	Yes		
15.	49.55	4.5 min	5157.5	1209.1	Yes		
16.	49.55	5.0 min	5794.3	1280.5	Yes		
17.	49.55	5.5 min	6366.6	1242.8	Yes		
18.	49.55	6.0 min	7074.8	1302.2	Yes		
19.	49.55	6.5 min	7609.4	1277.8	Yes		
20.	49.55	7.0 min	8377.0	1259.4	Yes		
21.	49.55	7.5 min	8887.2	1318.8	Yes		
22.	49.55	8.0 min	9636.4	1256.6	Yes		
23.	49.55	8.5 min	10206.0	1295.0	Yes		
24.	49.55	9.0 min	10893.0	1320.0	Yes		

TRF No. EN 50549-1:2019 Project No: 64.290.22.31030.01 Rev.: 00

Rev.: 00 Date: 2022-09-14 Page: 78 of 93 Telephone : +86 20 3832 0668 Telefax : +86 20 3832 0478

http://www.tuv-sud.cn

Clause	Requiremen	nt + Test		result – Remark	Verdic	
25.	49.55	9.5 min	11501.0	1293.0	Yes	
26.	49.55	10.0 min	12213.0	1268.0	Yes	
20. 27.	49.55	10.5 min	12794.0	1278.0	Yes	
28.	49.55	11.0 min	13481.0	1114.0	Yes	
29.	49.55	11.5 min	14072.0	1038.0	Yes	
30.	49.55	12.0 min	14595.0	461.0	Yes	
31.	49.55	12.5 min	15110.0	-	-	
32.	49.55	13.0 min	15056.0	_		
Response	6000.00	Automati	ic reconnection after t	ripping -1)	50.50	
1	6000.00				50.50	
1	4000.00				50.00	
1	2000.00			- APP	49.50	
	0000.00			Appendix .	49.00	
ower	8000.00		Accord		48.50 84 - 48.00 84 - 48.00 84 - 48.00 84 - 48.00	
Active Power[W]	6000.00		append to the same of the same		48.00	
	4000.00		Arron Marie		47.50	
	2000.00	مممسمسم			47.00	
-	17:24:08 17:24:26 17:24:50 17:25:13 17:25:37	17.26:00 17.26:24 17.26:47 17.27:31 17.27:38 17.27:38 17.28:45 17.28:45 17.29:30 17.29:30	Active Down 17 33:24 17 3		46.00	
			Test 2)			
Test sequence	e Freq (Hz)	Time stay in step (min.)	Whether reconne	ect to main and the active power (Yes/No)	generated?	
1.	50.25	0.5 min		No		
2.	50.25	1.0 min	No			
3.	50.25	1.5 min	No			
4.	50.25	2.0 min		No		

TRF No. EN 50549-1:2019 Project No: 64.290.22.31030.01

Freq (Hz)

50.15

50.15

Rev.: 00 Date: 2022-09-14 Page: 79 of 93

Test

sequence

5.

6.

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

http://www.tuv-sud.cn

Measured charge

rate P_{Measured} (W)

After reconnection

0

Time after reach

50.15 Hz (min.)

0.0 min

0.0 min

Arised charge rate ΔP

during next 1 minute (W)

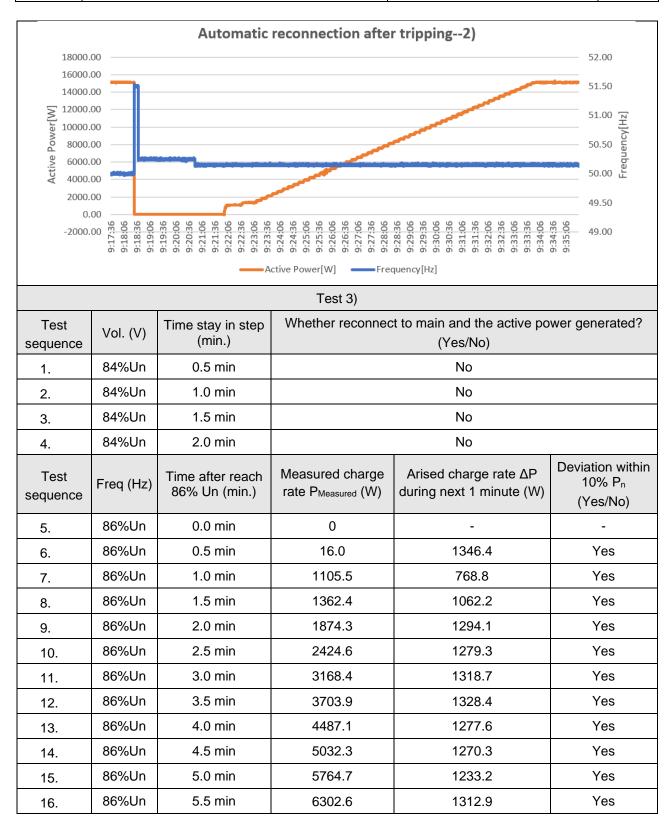
Reconnection time (s)

Deviation within

 $10\%\;P_n$

(Yes/No)

60s


Clause	Requirement	+ Test		result – Remark	Verdict
-	E0.1E	0.E min	64.0	1323.1	Vee
7.	50.15	0.5 min	64.9		Yes
8.	50.15	1.0 min	1071.0	812.5	Yes
9.	50.15	1.5 min	1388.0	990.8	Yes
10.	50.15	2.0 min	1883.5	1298.6	Yes
11.	50.15	2.5 min	2378.8	1313.6	Yes
12.	50.15	3.0 min	3182.1	1282.1	Yes
13.	50.15	3.5 min	3692.4	1359.2	Yes
14.	50.15	4.0 min	4464.2	1295.4	Yes
15.	50.15	4.5 min	5051.6	1227.4	Yes
16.	50.15	5.0 min	5759.6	1210.7	Yes
17.	50.15	5.5 min	6279.0	1322.8	Yes
18.	50.15	6.0 min	6970.3	1259.0	Yes
19.	50.15	6.5 min	7601.8	1294.4	Yes
20.	50.15	7.0 min	8229.3	1205.9	Yes
21.	50.15	7.5 min	8896.2	1269.8	Yes
22.	50.15	8.0 min	9435.2	1284.8	Yes
23.	50.15	8.5 min	10166.0	1350.0	Yes
24.	50.15	9.0 min	10720.0	1276.0	Yes
25.	50.15	9.5 min	11516.0	1236.0	Yes
26.	50.15	10.0 min	11996.0	1312.0	Yes
27.	50.15	10.5 min	12752.0	1254.0	Yes
28.	50.15	11.0 min	13308.0	1272.0	Yes
29.	50.15	11.5 min	14006.0	1109.0	Yes
30.	50.15	12.0 min	14580.0	544.0	Yes
31.	50.15	12.5 min	15115.0	-	-
32.	50.15	13.0 min	15124.0	-	-
Respons	e curve:				

Page: 80 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

Clause	Requirement + Test	result – Remark	Verdict
--------	--------------------	-----------------	---------

TRF No. EN 50549-1:2019 Project No: 64.290.22.31030.01

Rev.: 00 Date: 2022-09-14 Page: 81 of 93 Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

Clause	Requirement	+ Test		result – Remark	Verdict
			1		
17.	86%Un	6.0 min	6997.9	1286.8	Yes
18.	86%Un	6.5 min	7615.5	1272.3	Yes
19.	86%Un	7.0 min	8284.7	1213.0	Yes
20.	86%Un	7.5 min	8887.8	1312.2	Yes
21.	86%Un	8.0 min	9497.7	1230.3	Yes
22.	86%Un	8.5 min	10200.0	1282.0	Yes
23.	86%Un	9.0 min	10728.0	1273.0	Yes
24.	86%Un	9.5 min	11482.0	1293.0	Yes
25.	86%Un	10.0 min	12001.0	1010.0	Yes
26.	86%Un	10.5 min	12775.0	268.0	Yes
27.	86%Un	11.0 min	13011.0	-	Yes
28.	86%Un	11.5 min	13043.0	-	-

Response curve:

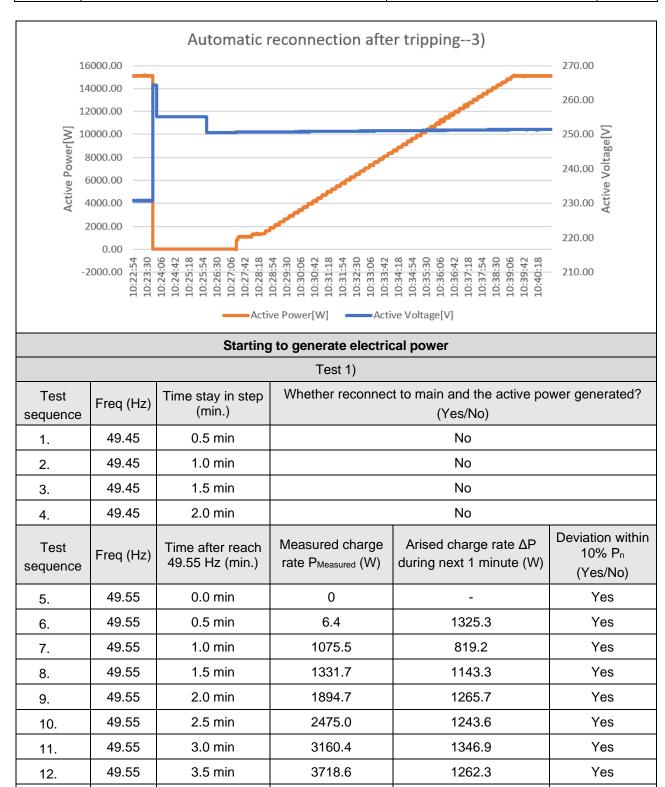
Automatic reconnection after tripping--3)

	Test 4)						
Test sequence	Vol. (V)	Time stay in step (min.)	Whether reconnect to main and the active power generated? (Yes/No)				
1.	111%Un	0.5 min	No				
2.	111%Un	1.0 min	No				
3.	111%Un	1.5 min	No				

TRF No. EN 50549-1:2019 Project No: 64.290.22.31030.01

Rev.: 00 Date: 2022-09-14 Page: 82 of 93 Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

http://www.tuv-sud.cn


Clause	Requirement + Test	result – Remark	Verdict	
--------	--------------------	-----------------	---------	--

4.	111%Un	2.0 min		No	
Test sequence	Freq (Hz)	Time after reach 109% Un (min.)	Measured charge rate P _{Measured} (W)	Arised charge rate ΔP during next 1 minute (W)	Deviation within 10% P _n (Yes/No)
5.	109%Un	0.0 min	0	-	-
6.	109%Un	0.5 min	82.54	1275.8	Yes
7.	109%Un	1.0 min	1102.60	770.3	Yes
8.	109%Un	1.5 min	1358.30	1012.8	Yes
9.	109%Un	2.0 min	1872.90	1269.7	Yes
10.	109%Un	2.5 min	2371.10	1327.3	Yes
11.	109%Un	3.0 min	3142.60	1280.8	Yes
12.	109%Un	3.5 min	3698.40	1271.2	Yes
13.	109%Un	4.0 min	4423.40	1296.4	Yes
14.	109%Un	4.5 min	4969.60	1337.6	Yes
15.	109%Un	5.0 min	5719.80	1223.9	Yes
16.	109%Un	5.5 min	6307.20	1301.2	Yes
17.	109%Un	6.0 min	6943.70	1174.1	Yes
18.	109%Un	6.5 min	7608.40	1266.3	Yes
19.	109%Un	7.0 min	8117.80	1307.9	Yes
20.	109%Un	7.5 min	8874.70	1298.3	Yes
21.	109%Un	8.0 min	9425.70	1250.3	Yes
22.	109%Un	8.5 min	10173.00	1324.0	Yes
23.	109%Un	9.0 min	10676.00	1326.0	Yes
24.	109%Un	9.5 min	11497.00	1261.0	Yes
25.	109%Un	10.0 min	12002.00	1271.0	Yes
26.	109%Un	10.5 min	12758.00	1273.0	Yes
27.	109%Un	11.0 min	13273.00	1311.0	Yes
28.	109%Un	11.5 min	14031.00	-	Yes
29.	109%Un	12.0 min	14584.00	-	Yes
30.	109%Un	12.5 min	15121.00		-
Response c	urve:				

Page: 83 of 93

Clause	Requirement + Test	result – Remark	Verdict
--------	--------------------	-----------------	---------

TRF No. EN 50549-1:2019 Project No: 64.290.22.31030.01

49.55

4.0 min

Rev.: 00 Date: 2022-09-14 Page: 84 of 93

13.

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

http://www.tuv-sud.cn

4507.3

TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch, TÜV SÜD Group 5F, Communication Building, 163 Pingyun Rd, Huangpu Ave. West, Guangzhou 510656, P. R. China

Yes

1301.9

lause	Requirement	t + Test		result – Remark	Verdi
	<u> </u>		Ι	1	
14.	49.55	4.5 min	4980.9	1311.7	Yes
15.	49.55	5.0 min	5809.2	1260.5	Yes
16.	49.55	5.5 min	6292.6	1286.4	Yes
17.	49.55	6.0 min	7069.7	1267.6	Yes
18.	49.55	6.5 min	7579.0	1344.3	Yes
19.	49.55	7.0 min	8337.3	1235.9	Yes
20.	49.55	7.5 min	8923.3	1317.7	Yes
21.	49.55	8.0 min	9573.2	1208.8	Yes
22.	49.55	8.5 min	10241.0	1230.0	Yes
23.	49.55	9.0 min	10782.0	1213.0	Yes
24.	49.55	9.5 min	11471.0	1251.0	Yes
25.	49.55	10.0 min	11995.0	1348.0	Yes
26.	49.55	10.5 min	12722.0	1333.0	Yes
27.	49.55	11.0 min	13343.0	1230.0	Yes
28.	49.55	11.5 min	14055.0	1026.0	-
29.	49.55	12.0 min	14573.0	675.0	-
30.	49.55	12.5 min	15081.0	-	
31.	49.55	13.0 min	15248.0	-	
16	000.00 000.00 000.00	Starting to	generate electr	ical power1)	50.00 49.50 49.00 48.50
er [≷	000.00				— 48.00 \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Active Power[W]	000.00		***************************************		48.00 47.50 — 47.00 47.00 47.00 47.00 47.00
.§ 6000.00					— 47.00 b
4000.00					— 46.50 — 46.00
	0.00				45.50
-2	10:47:02 10:47:33 10:48:04	10:48:35 10:49:06 10:49:37 10:50:39 10:50:39 10:51:41 10:51:12 10:51:12	10:53:14 10:53:14 10:54:16 10:54:47 10:55:18 10:55:49 10:56:20	10:57:22 10:57:23 10:58:24 10:58:55 10:59:26 11:00:28 11:01:30 11:02:01 11:02:01 11:03:03 11:03:03	45.00
			tive Power[W]F	requency[Hz]	

Page: 85 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

http://www.tuv-sud.cn

Clause	Requirement + Test	result – Remark	Verdict
--------	--------------------	-----------------	---------

Test sequence	Freq (Hz)	Time stay in step (min.)	Whether reconnect to main and the active power generated? (Yes/No)			
1.	50.15	0.5 min		No		
2.	50.15	1.0 min		No		
3.	50.15	1.5 min		No		
4.	50.15	2.0 min		No		
Test sequence	Freq (Hz)	Time after reach 50.05 Hz (min.)	Measured charge rate P _{Measured} (W)	Arised charge rate ΔP during next 1 minute (W)	Deviation within 10% P _n (Yes/No)	
5.	50.05	0.0 min	0	-	-	
6.	50.05	0.5 min	5.6	1358.9	Yes	
7.	50.05	1.0 min	1090.1	807.2	Yes	
8.	50.05	1.5 min	1364.5	1054.0	Yes	
9.	50.05	2.0 min	1897.3	1282.4	Yes	
10.	50.05	2.5 min	2418.5	1276.7	Yes	
11.	50.05	3.0 min	3179.7	1323.8	Yes	
12.	50.05	3.5 min	3695.2	1310.0	Yes	
13.	50.05	4.0 min	4503.5	1250.1	Yes	
14.	50.05	4.5 min	5005.2	1298.2	Yes	
15.	50.05	5.0 min	5753.6	1314.5	Yes	
16.	50.05	5.5 min	6303.4	1237.9	Yes	
17.	50.05	6.0 min	7068.1	1250.0	Yes	
18.	50.05	6.5 min	7541.3	1357.6	Yes	
19.	50.05	7.0 min	8318.1	1142.5	Yes	
20.	50.05	7.5 min	8898.9	1299.1	Yes	
21.	50.05	8.0 min	9460.6	1237.4	Yes	
22.	50.05	8.5 min	10198.0	1293.0	Yes	
23.	50.05	9.0 min	10698.0	1294.0	Yes	
24.	50.05	9.5 min	11491.0	1280.0	Yes	
25.	50.05	10.0 min	11992.0	1347.0	Yes	
26.	50.05	10.5 min	12771.0	1252.0	Yes	
27.	50.05	11.0 min	13339.0	1240.0	Yes	
28.	50.05	11.5 min	14023.0	1086.0	Yes	

Clause	Requiremen	t + Test		result – Remark	Verdict
29.	50.05	12.0 min	14579.0	547.0	Yes
30.	50.05	12.5 min	15109.0	-	Yes
31.	50.05	13.0 min	15126.0	_	100
Response		1010 111111	10.20.0		
	51	tarting to ge	nerate electi	rical power2)	
1	6000.00 -				50.40
1	4000.00				50.20
	2000.00	Pripries or			50.00 🔽
\rac{1}{2} 1	- 00.0000				至
OWO	8000.00 -				49.80
Ve P	6000.00 -				49.80 A9.60 A9.60 A9.40
Active Power[W]	4000.00 -		A STATE OF THE STA		49.40
	2000.00 -				49.20
	LO.	05 54 42 31 19 08	57 45 34 22 11 00	48 37 25 14 03 51 28	49.00
	2000.00 11:08:11	11:09:05 11:09:54 11:10:42 11:11:31 11:12:19 11:13:08	11:13:57 11:14:45 11:15:34 11:16:22 11:17:11 11:18:00	11:18:48 11:19:37 11:20:25 11:21:14 11:22:03 11:22:51 11:23:40 11:23:40	45.00
	11	11111	111111		
		Active	Power[W]	Frequency[Hz]	
			Test 3)		
Test	Vol. (V)	Time stay in step (min.)	Whether reconnect	et to main and the active po (Yes/No)	wer generated?
sequence	84%Un	0.5 min		No	
1. 2.	84%Un	1.0 min		No	
3.	84%Un	1.5 min		No	
4.	84%Un	2.0 min		No	
Test sequence	Freq (Hz)	Time after reach 86% Un (min.)	Measured charge rate P _{Measured} (W)	Arised charge rate ΔP during next 1 minute (W)	Deviation within 10% Pn (Yes/No)
5.	86%Un	0.0 min	0	-	-
6.	86%Un	0.5 min	74.0	1293.8	Yes
7.	86%Un	1.0 min	1094.5	749.2	Yes
8.	86%Un	1.5 min	1367.8	1047.2	Yes

Page: 87 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

http://www.tuv-sud.cn

Clause	Requirement	+ Test		result – Remark		Verdic
	200/11		0.44=0	10-0-		
10.	86%Un	2.5 min	2415.0	1273.5	Ye	
11.	86%Un	3.0 min	3180.0	1293.3	Ye	
12.	86%Un	3.5 min	3688.5	1304.3		es
13.	86%Un	4.0 min	4473.3	1232.0	Ye	
14.	86%Un	4.5 min	4992.8	1303.1	Ye	es
15.	86%Un	5.0 min	5705.3	1341.1	Ye	9 S
16.	86%Un	5.5 min	6295.9	1296.8	Ye	3 S
17.	86%Un	6.0 min	7046.4	1201.2	Ye	es
18.	86%Un	6.5 min	7592.7	1305.2	Ye	es
19.	86%Un	7.0 min	8247.6	1199.6	Ye	es
20.	86%Un	7.5 min	8897.9	1280.1	Ye	es
21.	86%Un	8.0 min	9447.2	1259.8	Ye	es
22.	86%Un	8.5 min	10178.0	1322.0	Ye	es
23.	86%Un	9.0 min	10707.0	1314.0	Ye	es
24.	86%Un	9.5 min	11500.0	1266.0	Ye	es
25.	86%Un	10.0 min	12021.0	1011.0	Ye	es
26.	86%Un	10.5 min	12766.0	271.0	Ye	es
27.	86%Un	11.0 min	13032.0	-	Ye	es
28.	86%Un	11.5 min	13037.0	-	Ye	
(espons	14000.0 —————————————————————————————————	Star	ting to generate electrical	power3)	— 230.00 —	
	8000.0 —————————————————————————————————		- Andrews		age [V]	
	0.0009 Active Power[W]				Active Voltage[V]	
	0.000.0 0.0 0.0 0.0 0.0 0.0 0.0	11.29.50 11.29.52 11.30.53 11.30.55 11.32.21 11.33.05 11.33.05 11.33.05 11.33.46	1134.07 1134.28 1134.50 1135.11 1135.54 1135.54 1136.36 1136.38 1137.40 1137.40 1138.01	11.26 744 11.29 075 11.29 0.20 11.20 0.31 11.20 0.31 11	170.00	

Page: 88 of 93

Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

http://www.tuv-sud.cn

Clause	Requirement + Test	result – Remark	Verdict
--------	--------------------	-----------------	---------

			Test 4)						
Test sequence	Vol. (V)	Time stay in step (min.)	Whether reconnec	et to main and the active po (Yes/No)	wer generated?				
1.	111%Un	0.5 min	No						
2.	111%Un	1.0 min	No						
3.	111%Un	1.5 min	No						
4.	111%Un	2.0 min	No						
Test sequence	Freq (Hz)	Time after reach 109% Un (min.)	Measured charge rate P _{Measured} (W)	Deviation within 10% P _n (Yes/No)					
5.	109%Un	0.0 min	0	-	-				
6.	109%Un	0.5 min	61.9	1285.4	Yes				
7.	109%Un	1.0 min	1086.2	790.3	Yes				
8.	109%Un	1.5 min	1347.3	1204.8	Yes				
9.	109%Un	2.0 min	1876.5	1296.9	Yes				
10.	109%Un	2.5 min	2552.1	1157.3	Yes				
11.	109%Un	3.0 min	3173.4	1267.9	Yes				
12.	109%Un	3.5 min	3709.4	1286.7	Yes				
13.	109%Un	4.0 min	4441.3	1323.6	Yes				
14.	109%Un	4.5 min	4996.1	1305.5	Yes				
15.	109%Un	5.0 min	5764.9	1283.9	Yes				
16.	109%Un	5.5 min	6301.6	1256.1	Yes				
17.	109%Un	6.0 min	7048.8	1290.8	Yes				
18.	109%Un	6.5 min	7557.7	1299.2	Yes				
19.	109%Un	7.0 min	8339.6	1241.1	Yes				
20.	109%Un	7.5 min	8856.9	1347.1	Yes				
21.	109%Un	8.0 min	9580.7	1237.3	Yes				
22.	109%Un	8.5 min	10204.0	1287.0	Yes				
23.	109%Un	9.0 min	10818.0	1195.0	Yes				
24.	109%Un	9.5 min	11491.0	1286.0	Yes				
25.	109%Un	10.0 min	12013.0	1278.0	Yes				
26.	109%Un	10.5 min	12777.0	1292.0	Yes				
27.	109%Un	11.0 min	13291.0	1295.0	Yes				

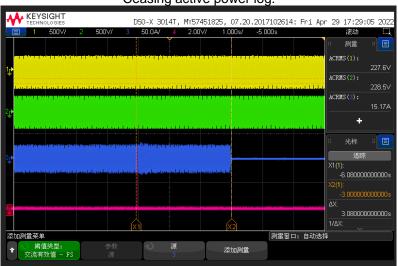
Page: 89 of 93

Clause	Requirement + Test	result – Remark	Verdict
--------	--------------------	-----------------	---------

28.	109%Un	11.5 min	14069.0	1047.0	Yes
29.	109%Un	12.0 min	14586.0	490.0	Yes
30.	109%Un	12.5 min	15116.0	-	-
31.	109%Un	13.0 min	15076.0	-	

Response curve: Starting to generate electrical power--4) 16000.0 290.00 14000.0 12000.0 10000.0 Active Power[W] 8000.0 6000.0 4000.0 2000.0 0.0 -30000-13:22:21 13:22:21 13:23:21 13:24:21 13:25:21 13:25:21 13.27.21 13.27.41 13.28.20 13.28.20 13.29.20 13.29.20 13.29.20 13.30.20 13. 13:26:21

Supplementary information: N/A


Rev.: 00 Date: 2022-09-14 Page: 90 of 93 Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

Clause	Requirement + Test	result – Remark	Verdict
--------	--------------------	-----------------	---------

4.11.1	Ceasing active power	Р	
Result			
	Logic interface provided?	Yes	
Ceasir	ng active power response time(s)	3.08s	
stop the	generation of active power time(s)	3.08s	

Ceasing active power log:

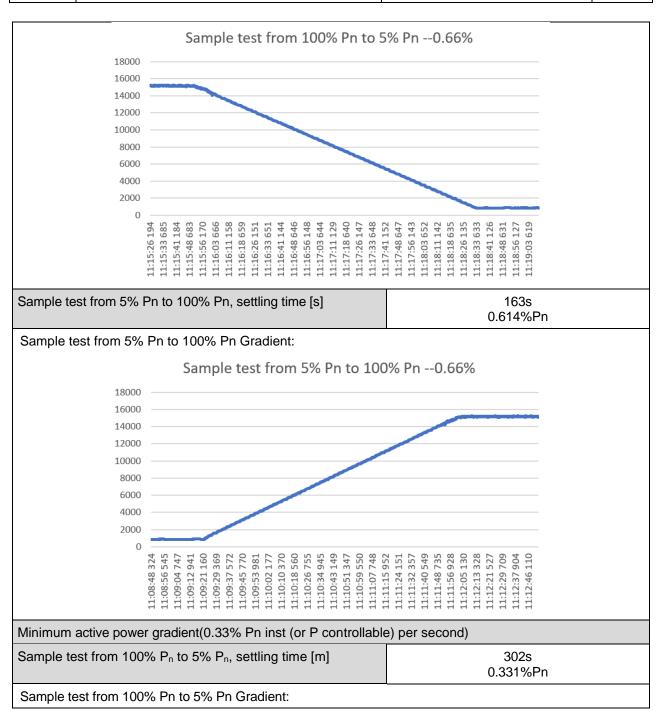
CH1: A phase voltage CH2: B phase voltage CH3: A phase current CH4: Signal

4.11.2	Reduction of active power on set point								Р	
P/P _{Emax} (%)	100	90	80	70	60	50	40	30	20	10
Setting value (W)	15000	13500	12000	10500	9000	7500	6000	4500	3000	1500
Measured value (W)	15095	13550	12018	10699	9146	7598	6033	4486	3005	1621
Deviation	0.6%	0.3%	0.1%	1.3%	1.0%	0.7%	0.2%	0.1%	0.1%	0.8%

Maximum active power gradient (0.66% Pn inst (or P controllable) per second)

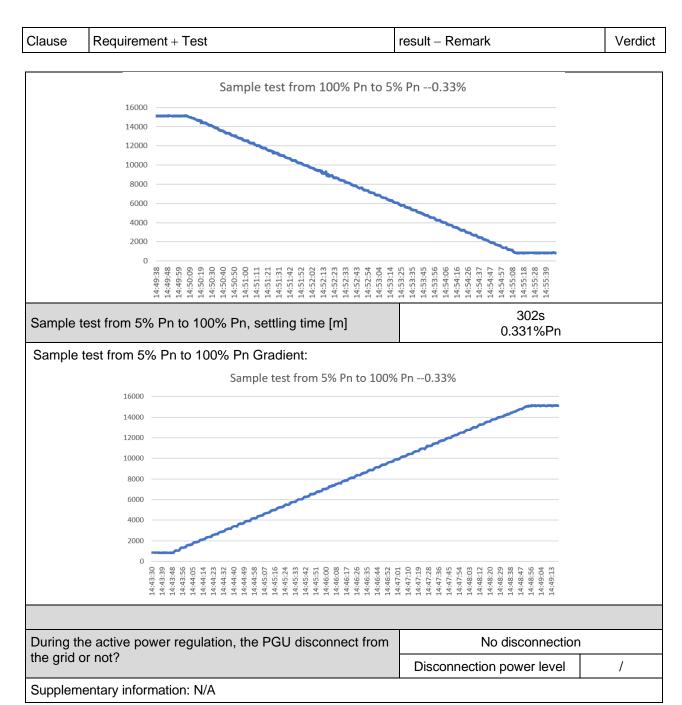
Sample test from 100% P_n to 5% P_n, settling time [s] 162s 0.614%Pn

Sample test from 100% Pn to 5% Pn Gradient:


TRF No. EN 50549-1:2019 Project No: 64.290.22.31030.01

Rev.: 00 Date: 2022-09-14 Page: 91 of 93 Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

http://www.tuv-sud.cn



Clause Requirement + Test result – Remark	Verdict
---	---------

Rev.: 00 Date: 2022-09-14 Page: 92 of 93 Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478

......End of test report.....

Rev.: 00 Date: 2022-09-14 Page: 93 of 93 Telephone: +86 20 3832 0668 Telefax: +86 20 3832 0478